
The XtreemFS Installation and User Guide
Version 1.2

ii

XtreemFS is developed within the XtreemOS project. XtreemOS is a Linux-based
Grid operating system that transparently integrates Grid user, VO and resource man-
agement traditionally found in Grid Middleware. The XtreemOS project is funded
by the European Commission’s IST program under contract #FP6-033576.

XtreemFS is available from the XtreemFS website (www.XtreemFS.org).

This document is c© 2009 by Björn Kolbeck, Jan Stender, Minor Gordon, Felix
Hupfeld, Juan Gonzales. All rights reserved.

http://www.xtreemos.eu
http://www.XtreemFS.org

Contents

1 Quick Start xi

2 About XtreemFS 1

2.1 What is XtreemFS? . 1

What makes XtreemFS a distributed file system? . . . 1

What makes XtreemFS a replicated file system? 1

2.2 Is XtreemFS suitable for me? . 2

XtreemFS is ... 2

XtreemFS is not ... 2

2.3 Core Features . 3

Distribution. 3

Replication. 3

Striping. 3

Security. 4

2.4 Architecture . 4

XtreemFS Components. 4

3 XtreemFS Services 7

3.1 Installation . 7

3.1.1 Prerequisites . 7

3.1.2 Installing from Pre-Packaged Releases 7

3.1.3 Installing from Sources . 8

3.2 Configuration . 8

3.2.1 A Word about UUIDs . 9

3.2.2 Automatic DIR Discovery 9

3.2.3 Authentication . 9

3.2.4 Configuring SSL Support 10

Converting PEM files to PKCS#12 10

iii

iv CONTENTS

Importing trusted certificates from PEM into a JKS 11

Sample Setup . 11

3.2.5 List of Configuration Options 13

admin_password optional 13

authentication_provider 13

babudb.baseDir . 13

babudb.cfgFile optional 13

babudb.checkInterval optional 14

babudb.compression optional 14

babudb.debug.level optional 14

babudb.localTimeRenew experimental, optional 15

babudb.logDir . 15

babudb.maxLogfileSize optional 15

babudb.pseudoSyncWait optional 16

babudb.repl.backupDir experimental, optional 16

babudb.repl.chunkSize experimental, optional 16

babudb.repl.participant experimental, optional 17

babudb.repl.sync.n experimental, optional 17

babudb.ssl.authenticationWithoutEncryption experi-
mental, optional 17

babudb.ssl.enabled experimental, optional 17

babudb.ssl.service_creds experimental, optional 18

babudb.ssl.service_creds.container experimental, op-
tional . 18

babudb.ssl.service_creds.pw experimental, optional . . 18

babudb.ssl.trusted_certs experimental, optional 18

babudb.ssl.trusted_certs.container experimental, op-
tional . 18

babudb.ssl.trusted_certs.pw experimental, optional . . 19

babudb.sync . 19

babudb.worker.maxQueueLength optional 20

babudb.worker.numThreads optional 20

capability_secret . 20

capability_timeout optional 20

checksums.enabled . 21

checksums.algorithm . 21

debug.level optional . 21

debug.categories optional 22

CONTENTS v

dir_service.host . 22

dir_service.port . 22

discover optional . 23

geographic_coordinates optional 23

hostname optional . 23

http_port . 23

listen.address optional 23

listen.port . 24

local_clock_renewal . 24

monitoring . 24

monitoring.email.programm 24

monitoring.email.receiver 24

monitoring.email.sender 25

monitoring.max_warnings 25

no_atime . 25

object_dir . 25

osd_check_interval . 25

remote_time_sync . 26

report_free_space . 26

service_timeout_s . 26

ssl.enabled . 26

ssl.grid_ssl . 26

ssl.service_creds . 27

ssl.service_creds.container 27

ssl.service_creds.pw 27

ssl.trusted_certs . 27

ssl.trusted_certs.container 27

ssl.trusted_certs.pw 28

startup.wait_for_dir 28

uuid . 28

3.3 Execution and Monitoring . 28

3.3.1 Starting and Stopping the XtreemFS services 28

3.3.2 Web-based Status Page . 29

3.3.3 DIR Service Monitoring . 30

3.4 Troubleshooting . 30

vi CONTENTS

4 XtreemFS Client 31
4.1 Installation . 31

4.1.1 Prerequisites . 31

4.1.2 Installing from Pre-Packaged Releases 31

4.1.3 Installing from Sources . 32

4.2 Volume Management . 32

4.2.1 Creating Volumes . 32

4.2.2 Deleting Volumes . 33

4.2.3 Listing all Volumes . 33

4.3 Accessing Volumes . 33

4.3.1 Mounting and Un-mounting 33

4.3.2 Mount Options . 34

4.4 Troubleshooting . 34

5 XtreemFS Tools 37
5.1 Installation . 37

5.1.1 Prerequisites . 37

5.1.2 Installing from Pre-Packaged Releases 37

5.1.3 Installing from Sources . 38

5.2 Maintenance Tools . 38

5.2.1 MRC Database Conversion 39

5.2.2 Scrubbing and Cleanup . 39

5.3 User Tools . 40

5.3.1 Showing XtreemFS-specific File Info 40

5.3.2 Changing Striping Policies 41

5.3.3 Read-Only Replication . 42

5.3.4 Automatic On-Close Replication 43

5.3.5 Changing OSD and Replica Selection Policies 44

5.3.6 Setting and Listing Policy Attributes 45

5.4 Vivaldi . 45

6 Policies 47
6.1 Authentication Policies . 47

6.1.1 UNIX uid/gid - NullAuthProvider 47

6.1.2 Plain SSL Certificates - SimpleX509AuthProvider 48

6.1.3 XtreemOS Certificates - XOSAuthProvider 48

6.2 Authorization Policies . 48

6.3 OSD and Replica Selection Policies 49

CONTENTS vii

6.3.1 Attributes . 49

6.3.2 Predefined Policies . 49

Filtering Policies . 50

Grouping Policies . 50

Sorting Policies . 51

6.4 Striping Policies . 51

6.5 Plug-in Policies . 52

A Support 53

B XtreemOS Integration 55

B.1 XtreemFS Security Preparations . 55

C Command Line Utilities 57

viii CONTENTS

Changes

This is a summary of the most important changes in release 1.2.

• renamed binaries
We renamed most binaries to conform with Linux naming conventions, e.g.
xtfs_mount is now mount.xtreemfs. However, we added links with the old
names for compatibility. For a full list see Sec. C.

• “Grid SSL” mode
In this mode, SSL is only used for authentication (handshake) and regular TCP
is used for communication afterwards. For more details see Sec. 3.2.4.

• the xctl utility
The new release includes a command line utility xctl for starting and stopping
the services. This tool is useful if you don’t want a package based installation
or if you don’t have root privileges.

• vivaldi
XtreemFS now includes modules for calculating Vivaldi network coordinates
to reflect the latency between OSDs and clients. An OSD and replica selection
policy for vivaldi is also available. For details, see Sec. 5.4.

ix

x CONTENTS

Chapter 1

Quick Start

This is the very short version to help you set up a local installation of XtreemFS.

1. Download XtreemFS RPMs/DEBs and install

(a) Download the RPMs or DEBs for your system from the XtreemFS web-
site (http://www.xtreemfs.org)

(b) open a root console (su or sudo)
(c) install with rpm -Uhv xtreemfs*-1.2.x.rpm

2. Start the Directory Service:
/etc/init.d/xtreemfs-dir start

3. Start the Metadata Server:
/etc/init.d/xtreemfs-mrc start

4. Start the OSD:
/etc/init.d/xtreemfs-osd start

5. If not already loaded, load the FUSE kernel module:
modprobe fuse

6. Depending on your distribution, you may have to add users to a special group
to allow them to mount FUSE file systems. In openSUSE users must be in the
group trusted, in Ubuntu in the group fuse. You may need to log out and
log in again for the new group membership to become effective.

7. You can now close the root console and work as a regular user.

8. Wait a few seconds for the services to register at the directory service. You
can check the registry by opening the DIR status page in your favorite web
browser http://localhost:30638.

9. Create a new volume with the default settings:
mkfs.xtreemfs localhost/myVolume

10. Create a mount point:
mkdir ˜/xtreemfs

xi

http://www.xtreemfs.org
http://localhost:30638

xii CHAPTER 1. QUICK START

11. Mount XtreemFS on your computer:

mount.xtreemfs localhost/myVolume ~/xtreemfs

12. Have fun ;-)

13. To un-mount XtreemFS:
umount.xtreemfs ˜/xtreemfs

You can also mount this volume on remote computers. First make sure that the
ports 32636, 32638 and 32640 are open for incoming TCP connections. You must
also specify a hostname that can be resolved by the remote machine! This hostname
has to be used instead of localhost when mounting.

Chapter 2

About XtreemFS

Since you decided to take a look at this user guide, you probably read or heard about
XtreemFS and want to find out more. This chapter contains basic information about
the characteristics and the architecture of XtreemFS.

2.1 What is XtreemFS?

XtreemFS is a file system for a variety of different use cases and purposes. Since it
is impossible to categorize or explain XtreemFS in a single sentence, we introduce
XtreemFS by means of its two most significant properties: XtreemFS is a globally
distributed and replicated file system.

What makes XtreemFS a distributed file system? We consider a file system as
distributed if files are stored across a number of servers rather than a single server or
local machine. Unlike local or network file systems, a distributed file system aggre-
gates the capacity of multiple servers. As a globally distributed file system, XtreemFS
servers may be dispersed all over the world. The capacity can be increased and de-
creased by adding and removing servers, but from a user’s perspective, the file system
appears to reside on a single machine.

What makes XtreemFS a replicated file system? We call it a replicated file system
because replication is one of its most prominent features. XtreemFS is capable of
maintaining replicas of files on different servers. Thus, files remain accessible even if
single servers, hard disks or network connections fail. Besides, replication yields ben-
efits in terms of data rates and access times. Different replicas of a file can be accessed
simultaneously on different servers, which may lead to a better performance com-
pared to simultaneous accesses on a single server. By placing file replicas close the
consuming users and applications in a globally distributed installation, the effects
of network latency and bandwidth reduction in wide area networks can be miti-
gated. However, replication is transparent to users and applications that work with
XtreemFS; the file system is capable of controlling the life cycle and access of replicas
without the need for human intervention or modifications of existing applications.

1

2 CHAPTER 2. ABOUT XTREEMFS

2.2 Is XtreemFS suitable for me?

If you consider using XtreemFS, you may be a system administrator in search of
a better and more flexible alternative to your current data management solution.
Or you may be a private user in need of a file system that can be easily set up and
accessed from any machine in the world. You might also be someone looking for
an open-source solution to manage large amounts of data distributed across multiple
sites. In any case, you will wonder if XtreemFS fulfills your requirements. As a
basis for your decision, the following two paragraphs point out the characteristics of
XtreemFS.

XtreemFS is ...

... an open source file system. It is distributed freely and can be used by anyone
without limitations.

... a POSIX file system. Users can mount and access XtreemFS like any other
common file system. Application can access XtreemFS via the standard file
system interface, i.e. without having to be rebuilt against a specialized API.
XtreemFS supports a POSIX-compliant access control model.

... a multi-platform file system. Server and client modules can be installed and
run on different platforms, including most Linux distributions, Solaris, Mac
OS X and Windows.

... a globally distributed file system. Unlike cluster file systems, an XtreemFS
installation is not restricted to a single administrative domain or cluster. It can
span the globe and may comprise servers in different administrative domains.

... a failure-tolerant file system. As stated in the previous section, replication can
keep the system alive and the data safe. In this respect, XtreemFS differs from
most other open-source file systems.

... a secure file system. To ensure security in an untrusted, worldwide network,
all network traffic can be encrypted with SSL connections, and users can be
authenticated with X.509 certificates.

... a customizable file system. Since XtreemFS can be used in different environ-
ments, we consider it necessary to give administrators the possibility of adapt-
ing XtreemFS to the specific needs of their users. Customizable policies make
it possible change the behavior of XtreemFS in terms of authentication, access
control, striping, replica placement, replica selection and others. Such policies
can be selected from a set of predefined policies, or implemented by adminis-
trators and plugged in the system.

XtreemFS is not ...

... a high-performance cluster file system. Even though XtreemFS reaches accept-
able throughput rates on a local cluster, it cannot compete with specialized
cluster file systems in terms of raw performance numbers. Most such file sys-
tems have an optimized network stack and protocols, and a substantially larger

2.3. CORE FEATURES 3

development team. If you have huge amounts of data on a local cluster with
little requirements but high throughput rates to them, a cluster file system is
probably the better alternative.

... a replacement for a local file system. Even though XtreemFS can be set up
and mounted on a single machine, the additional software stack degrades the
performance, which makes XtreemFS a bad alternative.

2.3 Core Features

The core functionality of XtreemFS is characterized by a small set of features, which
are explained in the following.

Distribution. An XtreemFS installation comprises multiple servers that may run
on different nodes connected on a local cluster or via the Internet. Provided that
the servers are reachable, a client module installed on any machine in the world can
access the installation. A binary communication protocol based on Sun’s ONC-
RPC ensures an efficient communication with little overhead between clients and
servers. XtreemFS ensures that the file system remains in a consistent state even if
multiple clients access a common set of files and directories. Similar to NFS, it offers
a close-to-open consistency model in the event of concurrent file accesses.

Replication. Since version 1.0, XtreemFS supports read-only replication. A file
may have multiple replicas, provided that the it was explicitly made read-only before,
which means that its content cannot be changed anymore. This kind of replication
can be used to make write-once files available to many consumers, or to protect them
from losses due to hardware failures. Besides complete replicas that are immediately
synchronized after having been created, XtreemFS also supports partial replicas that
are only filled with content on demand. They can e.g. be used to make large files
accessible to many clients, of which only parts need to be accessed.

Currently, XtreemFS does not support replication of mutable files. From a technical
perspective, this is more challenging than read-only replication, since XtreemFS has
to ensure that all replicas of a file remain consistent despite attempts to concurrently
write different replicas, as well as network and component failures. However, we are
planning on supporting full read-write replication with future XtreemFS releases.

Striping. To ensure acceptable I/O throughput rates when accessing large files,
XtreemFS supports striping. A striped file is split into multiple chunks (“stripes”),
which are stored on different storage servers. Since different stripes can be accessed in
parallel, the whole file can be read or written with the aggregated network and stor-
age bandwidth of multiple servers. XtreemFS currently supports the RAID0 striping
pattern, which splits a file up in a set of stripes of a fixed size, and distributes them
across a set of storage servers in a round-robin fashion. The size of an individual
stripe as well as the number of storage servers used can be configured on a per-file or
per-directory basis.

4 CHAPTER 2. ABOUT XTREEMFS

Security. To enforce security, XtreemFS offers mechanisms for user authentication
and authorization, as well as the possibility to encrypt network traffic.

Authentication describes the process of verifying a user’s or client’s identity. By
default, authentication in XtreemFS is based on local user names and depends on the
trustworthiness of clients and networks. In case a more secure solution is needed,
X.509 certificates can be used.

Authorization describes the process of checking user permissions to execute an oper-
ation. XtreemFS supports the standard UNIX permission model, which allows for
assigning individual access rights to file owners, owning groups and other users.

Authentication and authorization are policy-based, which means that different mod-
els and mechanisms can be used to authenticate and authorize users. Besides, the
policies are pluggable, i.e. they can be freely defined and easily extended.

XtreemFS uses unauthenticated and unencrypted TCP connections by default. To
encrypt all network traffic, services and clients can establish SSL connections. How-
ever, using SSL requires that all users and services have valid X.509 certificates.

2.4 Architecture

XtreemFS implements an object-based file system architecture (Fig. 2.1): file content is
split into a series of fixed-size objects and stored across storage servers, while meta-
data is stored on a separate metadata server. The metadata server organizes file sys-
tem metadata as a set of volumes, each of which implements a separate file system
namespace in form of a directory tree.

In contrast to block-based file systems, the management of available and used storage
space is offloaded from the metadata server to the storage servers. Rather than inode
lists with block addresses, file metadata contains lists of storage servers responsible
for the objects, together with striping policies that define how to translate between
byte offsets and object IDs. This implies that object sizes may vary from file to file.

XtreemFS Components. An XtreemFS installation contains three types of servers
that can run on one or several machines (Fig. 2.1):

• DIR - Directory Service
The directory service is the central registry for all services in XtreemFS. The
MRC uses it to discover storage servers.

• MRC - Metadata and Replica Catalog
The MRC stores the directory tree and file metadata such as file name, size
or modification time. Moreover, the MRC authenticates users and authorizes
access to files.

• OSD - Object Storage Device
An OSD stores arbitrary objects of files; clients read and write file data on
OSDs.

2.4. ARCHITECTURE 5

Figure 2.1: The XtreemFS architecture and components.

These servers are connected by the client to a file system. A client mounts one of
the volumes of the MRC in a local directory. It translates file system calls into RPCs
sent to the respective servers.

The client is implemented as a FUSE user-level driver that runs as a normal process.
FUSE itself is a kernel-userland hybrid that connects the user-land driver to Linux’
Virtual File System (VFS) layer where file system drivers usually live.

6 CHAPTER 2. ABOUT XTREEMFS

Chapter 3

XtreemFS Services

This chapter describes how to install and set up the server side of an XtreemFS
installation.

3.1 Installation

When installing XtreemFS server components, you can choose from two different
installation sources: you can download one of the pre-packaged releases that we create
for most Linux distributions or you can install directly from the source tarball.

Note that the source tarball contains the complete distribution of XtreemFS, which
also includes client and tools. Currently, binary distributions of the server are only
available for Linux.

3.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

3.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-server-1.2.x.rpm xtreemfs-backend-1.2.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-server-1.2.x.deb xtreemfs-backend-1.2.x.deb

7

8 CHAPTER 3. XTREEMFS SERVICES

To install the server components, the following package is required: jre ≥ 1.6.0 for
RPM-based releases, java6-runtime for Debian-based releases. If you already have
a different distribution of Java6 on your system, you can alternatively install the
XtreemFS server packages as follows:

$> rpm -i --nodeps xtreemfs-server-1.2.x.rpm \
xtreemfs-backend-1.2.x.rpm

on RPM-based distributions,

$> dpkg -i --ignore-depends java6-runtime \
xtreemfs-server-1.2.x.deb xtreemfs-backend-1.2.x.deb

on Debian-based distributions.
To ensure that your local Java6 installation is used, is necessary to set the JAVA_HOME
environment variable to your Java6 installation directory, e.g.

$> export JAVA_HOME=/usr/java6

Both RPM and Debian-based packages will install init.d scripts for an automatic
start-up of the services. Use insserv xtreemfs-dir, insserv xtreemfs-mrc
and insserv xtreemfs-osd, respectively, to automatically start the services during
boot.

3.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make server

This will build the XtreemFS server and Java-based tools. When done, execute

$> sudo make install-server

to install the server components. Finally, you will be asked to execute a post-
installation script

$> sudo /etc/xos/xtreemfs/postinstall_setup.sh

to complete the installation.

3.2 Configuration

After having installed the XtreemFS server components, it is recommendable to
configure the different services. This section describes the different configuration
options.
XtreemFS services are configured via Java properties files that can be modified with
a normal text editor. Default configuration files for a Directory Service, MRC and
OSD are located in /etc/xos/xtreemfs/.

3.2. CONFIGURATION 9

3.2.1 A Word about UUIDs

XtreemFS uses UUIDs (Universally Unique Identifiers) to be able to identify services
and their associated state independently from the machine they are installed on. This
implies that you cannot change the UUID of an MRC or OSD after it has been used
for the first time!

The Directory Service resolves UUIDs to service endpoints, where each service end-
point consists of an IP address or hostname and port number. Each endpoint is
associated with a netmask that indicates the subnet in which the mapping is valid. In
theory, multiple endpoints can be assigned to a single UUID if endpoints are associ-
ated with different netmasks. However, it is currently only possible to assign a single
endpoint to each UUID; the netmask must be “*”, which means that the mapping
is valid in all networks. Upon first start-up, OSDs and MRCs will auto-generate the
mapping if it does not exist, by using the first available network device with a public
address.

Changing the IP address, hostname or port is possible at any time. Due to the
caching of UUIDs in all components, it can take some time until the new UUID
mapping is used by all OSDs, MRCs and clients. The TTL (time-to-live) of a mapping
defines how long an XtreemFS component is allowed to keep entries cached. The
default value is 3600 seconds (1 hour). It should be set to shorter durations if services
change their IP address frequently.

To create a globally unique UUID you can use tools like uuidgen. During instal-
lation, the post-install script will automatically create a UUID for each OSD and
MRC if it does not have a UUID assigned.

3.2.2 Automatic DIR Discovery

OSDs and MRCs are capable of automatically discovering a Directory Service. If
automatic DIR discovery is switched on, the service will broadcast requests to the
local LAN and wait up to 10s for a response from a DIR. The services will select the
first DIR which responded, which can lead to non-deterministic behavior if multiple
DIR services are present. Note that the feature works only in a local LAN envi-
ronment, as broadcast messages are not routed to other networks. Local firewalls
on the computers on which the services are running can also prevent the automatic
discovery from working.

Security: The automatic discovery is a potential security risk when used in un-
trusted environments as any user can start-up DIR services.

A statically configured DIR address and port can be used to disable DIR discovery in
the OSD and MRC (see Sec. 3.2.5, dir_service). By default. the DIR responds to
UDP broadcasts. To disable this feature, set discover = false in the DIR service
config file.

3.2.3 Authentication

Administrators may choose the way of authenticating users in XtreemFS. Authenti-
cation Providers are pluggable modules that determine how users are authenticated.
For further details, see Sec. 6.1.

10 CHAPTER 3. XTREEMFS SERVICES

To set the authentication provider, it is necessary to set the following property in
the MRC configuration file:

authentication_provider = <classname>

By default, the following class names can be used:

• org.xtreemfs.common.auth.NullAuthProvider
uses local user and group IDs

• org.xtreemfs.common.auth.SimpleX509AuthProvider
uses X.509 certificates; user and group IDs are extracted from the distinguished
names of the certificates

• org.xtreemos.XtreemOSAuthProvider
uses XOSCerts

3.2.4 Configuring SSL Support

In order to enable certificate-based authentication in an XtreemFS installation, ser-
vices need to be equipped with X.509 certificates. Certificates are used to establish
a mutual trust relationship among XtreemFS services and between the XtreemFS
client and XtreemFS services.

Note that it is not possible to mix SSL-enabled and non-SSL services in an XtreemFS
installation! If you only need authentication based on certiciates without SSL, you
can use the “grid SSL” mode. In this mode XtreemFS will only do an SSL handshake
and fall back to plain TCP for communication. This mode is insecure (not encrypted
and records are not signed) but just as fast as the non-SSL mode. If this mode is
enabled, all client tools must be used with the oncrpcg:// scheme prefix.

Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have been created and signed, the credentials may need to be converted into the
correct file format. XtreemFS services also need a trust store that contains all trusted
Certification Authority certificates.

By default, certificates and credentials for XtreemFS services are stored in

/etc/xos/xtreemfs/truststore/certs

Converting PEM files to PKCS#12

The simplest way to provide the credentials to the services is by converting your
signed certificate and private key into a PKCS#12 file using openssl:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

3.2. CONFIGURATION 11

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service. The passwords chosen when
asked must be set as a property in the corresponding service configuration file.

Importing trusted certificates from PEM into a JKS

The certificate (or multiple certificates) from your CA (or CAs) can be imported
into a Java Keystore (JKS) using the Java keytool which comes with the Java JDK
or JRE.

Execute the following steps for each CA certificate using the same keystore file.

$> keytool -import -alias rootca -keystore trusted.jks \
-trustcacerts -file ca-cert.pem

This will create a new Java Keystore trusted.jks with the CA certificate in the cur-
rent working directory. The password chosen when asked must be set as a property
in the service configuration files.

Note: If you get the following error

keytool error: java.lang.Exception: Input not an X.509 certificate

you should remove any text from the beginning of the certificate (until the ––-BEGIN
CERTIFICATE––- line).

Sample Setup

Users can easily set up their own CA (certificate authority) and create and sign cer-
tificates using openssl for a test setup.

1. Set up your test CA.

(a) Create a directory for your CA files

$> mkdir ca

(b) Create a private key and certificate request for your CA.

$> openssl req -new -newkey rsa:1024 -nodes -out ca/ca.csr \
-keyout ca/ca.key

Enter something like XtreemFS-DEMO-CA as the common name (or
something else, but make sure the name is different from the server and
client name!).

(c) Create a self-signed certificate for your CA which is valid for one year.

$> openssl x509 -trustout -signkey ca/ca.key -days 365 -req \
-in ca/ca.csr -out ca/ca.pem

(d) Create a file with the CA’s serial number

$> echo "02" > ca/ca.srl

12 CHAPTER 3. XTREEMFS SERVICES

2. Set up the certificates for the services and the XtreemFS Client.
Replace service with dir, mrc, osd and client.

(a) Create a private key for the service.
Use XtreemFS-DEMO-service as the common name for the certificate.
$> openssl req -new -newkey rsa:1024 -nodes

-out service.req
-keyout service.key

(b) Sign the certificate with your demo CA.
The certificate is valid for one year.
$> openssl x509 -CA ca/ca.pem -CAkey ca/ca.key

-CAserial ca/ca.srl -req
-in service.req
-out service.pem -days 365

(c) Export the service credentials (certificate and private key) as a PKCS#12
file.
Use “passphrase” as export password. You can leave the export password
empty for the XtreemFS Client to avoid being asked for the password on
mount.
$> openssl pkcs12 -export -in service.pem -inkey service.key

-out service.p12 -name "service"

(d) Copy the PKCS#12 file to the certificates directory.
$> mkdir -p /etc/xos/xtreemfs/truststore/certs
$> cp service.p12 /etc/xos/xtreemfs/truststore/certs

3. Export your CA’s certificate to the trust store and copy it to the certificate dir.
You should answer “yes” when asked “Trust this certificate”.
Use “passphrase” as passphrase for the keystore.

$> keytool -import -alias ca -keystore trusted.jks \
-trustcacerts -file ca/ca.pem

$> cp trusted.jks /etc/xos/xtreemfs/truststore/certs

4. Configure the services. Edit the configuration file for all your services. Set the
following configuration options (see Sec. 3.2 for details).
ssl.enabled = true
ssl.service_creds.pw = passphrase
ssl.service_creds.container = pkcs12
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/service.p12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/trusted.jks
ssl.trusted_certs.pw = passphrase
ssl.trusted_certs.container = jks

5. Start up the XtreemFS services (see Sec. 3.3.1).

6. Create a new volume (see Sec. 4.2.1 for details).

$> mkfs.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 localhost/test

3.2. CONFIGURATION 13

7. Mount the volume (see Sec. 4.3 for details).

$> mount.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 localhost/test /mnt

3.2.5 List of Configuration Options

All configuration parameters that may be used to define the behavior of the different
services are listed in this section. Unless marked as optional, a parameter has to occur
(exactly once) in a configuration file. Parameters marked as experimental belong to
the DIR and MRC replication feature, which is currently under development. It is
not recommended to mess about with these options if you want to use XtreemFS in
production.

admin_password optional

Services DIR, MRC, OSD
Values String
Default
Description Defines the admin password that must be sent to authorize requests

like volume creation, deletion or shutdown. The same password is
also used to access the HTTP status page of the service (user name is
admin).

authentication_provider

Services MRC
Values Java class name
Default org.xtreemfs.common.auth.NullAuthProvider
Description Defines the Authentication Provider to use to retrieve the user iden-

tity (user ID and group IDs). See Sec. 3.2.3 for details.

babudb.baseDir

Services DIR, MRC
Values absolute file system path to a directory
Default DIR: /var/lib/xtreemfs/dir/database

MRC: /var/lib/xtreemfs/mrc/database
Description The directory in which the Directory Service or MRC will store their

databases. This directory should never be on the same partition as any
OSD data, if both services reside on the same machine. Otherwise,
deadlocks may occur if the partition runs out of free disk space.

babudb.cfgFile optional

Services DIR, MRC
Values a file name
Default DIR: config.db

MRC: config.db
Description Name for the database configuration file.

14 CHAPTER 3. XTREEMFS SERVICES

babudb.checkInterval optional

Services DIR, MRC
Values a positive integer value
Default DIR: 300

MRC: 300
Description The number of seconds between two checks of the disk log size for au-

tomatic checkpointing. Set this value to 0 to disable automatic check-
pointing.

babudb.compression optional

Services DIR, MRC
Values true or false
Default DIR: false

MRC: false
Description Flag that determines whether the indices shall be compressed or not.

babudb.debug.level optional

Services DIR, MRC
Values 0, 1, 2, 3, 4, 5, 6, 7
Default DIR: 4

MRC: 4
Description This is the debug level for BabuDB only. The debug level determines

the amount and detail of information written to logfiles. Any debug
level includes log messages from lower debug levels. The following
log levels exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

3.2. CONFIGURATION 15

babudb.localTimeRenew experimental, optional

Services DIR, MRC
Values a positive integer value
Default
Description Intervall in milliseconds for synchronizing the ONCRPCServer and

ONCRPCClient of the BabuDB replication with the local clock.

babudb.logDir

Services DIR, MRC
Values absolute file system path
Default DIR: /var/lib/xtreemfs/dir/db-log

MRC: /var/lib/xtreemfs/mrc/db-log
Description The directory the MRC uses to store database logs. This directory

should never be on the same partition as any OSD data, if both ser-
vices reside on the same machine. Otherwise, deadlocks may occur if
the partition runs out of free disk space.

babudb.maxLogfileSize optional

Services DIR, MRC
Values a positive integer value
Default DIR: 16777216

MRC: 16777216
Description If automatic checkpointing is enabled, a checkpoint is created when

the disk logfile exceedes maxLogfileSize bytes. The value should be
reasonable large to keep the checkpointing-rate low. However, it
should not be too large as a large disk log increases the recovery time
after a crash.

16 CHAPTER 3. XTREEMFS SERVICES

babudb.pseudoSyncWait optional

Services DIR, MRC
Values a positive integer value
Default DIR: 200

MRC: 0
Description The BabuDB disk logger can batch multiple operations into a single

write+fsync to increase the throughput. This does only work if there
are operations executed in parallel by the worker threads. In turn, if
you work on a single database it becomes less efficient. To circumvent
this problem, BabuDB offers a pseudo-sync mode which is similar
to the PostgreSQL write-ahead log (WAL). If pseduoSyncWait is set
to a value larger then 0, this pseudo-sync mode is enabled. In this
mode, insert operations are acknowledged as soon as they have been
executed on the in-memory database index. The disk logger will ex-
ecute a batch write of up to 500 operations followed by a single sync
(see syncMode) every pseudoSyncWait ms. This mode is considerably
faster than synchronous writes but you can lose data in case of a crash.
In contrast to ASYNC mode the data loss is limited to the operations
executed in the last pseudoSyncWait ms.

babudb.repl.backupDir experimental, optional

Services DIR, MRC
Values a absolute file system path
Default
Description DB backup directory needed for the initial loading of a slave BabuDB

from the master BabuDB.

babudb.repl.chunkSize experimental, optional

Services DIR, MRC
Values a positive integer greater 0
Default
Description At the initial load mechanism the database files will be split into

chunks. The size of this chunks in bytes can be defined here.

3.2. CONFIGURATION 17

babudb.repl.participant experimental, optional

Services DIR, MRC
Values see description
Default
Description The addresses of the hosts running an instance of BabuDB and par-

ticipating at the replication. The local address is also required in this
list. BabuDB will find out on its own, which of the given addresses is
the local one.
Field babudb.repl.participant.i defines the domain name or IP address.
Field babudb.repl.participant.i.port defines the port.

babudb.repl.participant.0
babudb.repl.participant.0.port
babudb.repl.participant.1
babudb.repl.participant.1.port
...
babudb.repl.participant.n
babudb.repl.participant.n.port
for n participants.

babudb.repl.sync.n experimental, optional

Services DIR, MRC
Values a positive integer value
Default
Description The number of slaves that at least have to be synchronous to the mas-

ter BabuDB application. To use asynchronous replication, this value
has to be set to 0. Otherwise it has to be less or equal to the number
of participants.

babudb.ssl.authenticationWithoutEncryption experimental, optional

Services DIR, MRC
Values true or false
Default
Description Flag that determines if authentication should be used without en-

crypting the connection. For BabuDB replication only.

babudb.ssl.enabled experimental, optional

Services DIR, MRC
Values true or false
Default
Description Options to use a secure connection with SSL authenticaion and op-

tionally encryption for the BabuDB replication.

18 CHAPTER 3. XTREEMFS SERVICES

babudb.ssl.service_creds experimental, optional

Services MRC, OSD
Values path to file
Default
Description Must be specified if babudb.ssl.enabled is true. Speci-

fies the file containing the service credentials (X.509 certificate
and private key). PKCS#12 and JKS format can be used, set
babudb.ssl.service_creds.container accordingly. This file is
used during the SSL handshake to authenticate the service.

babudb.ssl.service_creds.container experimental, optional

Services MRC, OSD
Values pkcs12 or JKS
Default
Description Must be specified if babudb.ssl.enabled is true. Specifies the file

format of the babudb.ssl.service_creds file.

babudb.ssl.service_creds.pw experimental, optional

Services MRC, OSD
Values String
Default
Description Must be specified if babudb.ssl.enabled is true. Spec-

ifies the password which protects the credentials file
babudb.ssl.service_creds.

babudb.ssl.trusted_certs experimental, optional

Services MRC, OSD
Values path to file
Default
Description Must be specified if babudb.ssl.enabled is true. Specifies the file

containing the trusted root certificates (e.g. CA certificates) used to
authenticate clients.

babudb.ssl.trusted_certs.container experimental, optional

Services MRC, OSD
Values pkcs12 or JKS
Default
Description Must be specified if babudb.ssl.enabled is true. Specifies the file

format of the babudb.ssl.trusted_certs file.

3.2. CONFIGURATION 19

babudb.ssl.trusted_certs.pw experimental, optional

Services MRC, OSD
Values String
Default
Description Must be specified if babudb.ssl.enabled is true. Spec-

ifies the password which protects the trusted certificates file
babudb.ssl.trusted_certs.

babudb.sync

Services DIR, MRC
Values ASYNC, SYNC_WRITE_METADATA, SYNC_WRITE,

FDATASYNC or FSYNC
Default DIR: FSYNC

MRC: ASYNC
Description The sync mode influences how operations are commited to the disk

log before the operation is acknowledged to the caller.

- ASYNC mode the writes to the disk log are buffered in memory
by the operating system. This is the fastest mode but will lead
to data loss in case of a crash, kernel panic or power failure.

- SYNC_WRITE_METADATA opens the file with O_SYNC,
the system will not buffer any writes. The operation will
be acknowledged when data has been safely written to disk.
This mode is slow but offers maximum data safety. However,
BabuDB cannot influence the disk drive caches, this depends on
the OS and hard disk model.

- SYNC_WRITE similar to SYNC_WRITE_METADATA but
opens file with O_DSYNC which means that only the data is
commit to disk. This can lead to some data loss depending on
the implementation of the underlying file system. Linux does
not implement this mode.

- FDATASYNC is similar to SYNC_WRITE but opens the file
in asynchronous mode and calls fdatasync() after writing the
data to disk.

- FSYNC is similar to SYNC_WRITE_METADATA but opens
the file in asynchronous mode and calls fsync() after writing the
data to disk.

For best throughput use ASYNC, for maximum data safety use
FSYNC.

20 CHAPTER 3. XTREEMFS SERVICES

babudb.worker.maxQueueLength optional

Services DIR, MRC
Values a positiv integer value
Default DIR: 250

MRC: 250
Description If set to a value larger than 0, this is the maximum number of requests

which can be in a worker’s queue. This value should be used if you
have pseudo-synchronous mode enabled to ensure that your queues
don’t grow until you get an out of memory exception. Can be set to
0 if pseudo-sync mode is disabled.

babudb.worker.numThreads optional

Services DIR, MRC
Values a positiv integer value
Default DIR: 0

MRC: 0
Description The number of worker threads to be used for database operations. As

BabuDB does not use locking, each database is handled by only one
worker thread. If there are more databases than worker threads, the
databases are distributed onto the available threads. The number of
threads should be set to a value smaller than the number of available
cores to reduce overhead through context switches. You can also set
the number of worker threads to 0. This will considerably reduce
latency, but may also decrease throughput on a multicore system with
more than one database.

capability_secret

Services MRC, OSD
Values String
Default
Description Defines a shared secret between the MRC and all OSDs. The secret

is used by the MRC to sign capabilities, i.e. security tokens for data
access at OSDs. In turn, an OSD uses the secret to verify that the
capability has been issued by the MRC.

capability_timeout optional

Services MRC
Values seconds
Default 600
Description Defines the relative time span for which a capability is valid after hav-

ing been issued.

3.2. CONFIGURATION 21

checksums.enabled

Services OSD
Values true, false
Default false
Description If set to true, the OSD will calculate and store checksums for newly

created objects. Each time a checksummed object is read, the check-
sum will be verified.

checksums.algorithm

Services OSD
Values Adler32, CRC32
Default Adler32
Description Must be specified if checksums.enabled is enabled. This property

defines the algorithm used to create OSD checksums.

debug.level optional

Services DIR, MRC, OSD
Values 0, 1, 2, 3, 4, 5, 6, 7
Default 6
Description The debug level determines the amount and detail of information

written to logfiles. Any debug level includes log messages from lower
debug levels. The following log levels exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

22 CHAPTER 3. XTREEMFS SERVICES

debug.categories optional

Services DIR, MRC, OSD
Values all, lifecycle, net, auth, stage, proc, db, misc
Default all
Description Debug categories determine the domains for which log messages will

be printed. By default, there are no domain restrictions, i.e. log mes-
sages form all domains will be included in the log. The following
categories can be selected:

all - no restrictions on the category

lifecycle - service lifecycle-related messages, including startup and shut-
down events

net - messages pertaining to network traffic and communication be-
tween services

auth - authentication and authorization-related messages

stage - messages pertaining to the flow of requests through the different
stages of a service

proc - messages about the processing of requests

db - messages that are logged in connection with database accesses

misc - any other log messages that do not fit in one of the previous
categories

Note that it is possible to specify multiple categories by means of a
comma or space-separated list.

dir_service.host

Services MRC, OSD
Values hostname or IP address
Default localhost
Description Specifies the hostname or IP address of the directory service (DIR)

at which the MRC or OSD should register. The MRC also uses this
Directory Service to find OSDs. If set to .autodiscover the ser-
vice will use the automatic DIR discovery mechanism (see Sec. 3.2.2).
(Note that the initial ‘.’ is used to avoid ambiguities with hosts called
“autodiscover”.)

dir_service.port

Services MRC, OSD
Values 1 .. 65535
Default 32638
Description Specifies the port on which the remote directory service is listening.

Must be identical to the listen_port in your directory service con-
figuration.

3.2. CONFIGURATION 23

discover optional

Services DIR
Values true, false
Default true
Description If set to true the DIR will received UDP broadcasts and advertise

itself in response to XtreemFS components using the DIR automatic
discovery mechanism. If set to false, the DIR will ignore all UDP
traffic. For details see Sec. 3.2.2.

geographic_coordinates optional

Services DIR, MRC, OSD
Values String
Default
Description Specifies the geographic coordinates which are registered with the di-

rectory service. Used e.g. by the web console.

hostname optional

Services MRC, OSD
Values String
Default
Description If specified, it defines the host name that is used to register the service

at the directory service. If not specified, the host address defined in
listen.address will be used if specified. If neither hostname nor
listen.address are specified, the service itself will search for exter-
nally reachable network interfaces and advertise their addresses.

http_port

Services DIR, MRC, OSD
Values 1 .. 65535
Default 30636 (MRC), 30638 (DIR), 30640 (OSD)
Description Specifies the listen port for the HTTP service that returns the status

page.

listen.address optional

Services OSD
Values IP address
Default
Description If specified, it defines the interface to listen on. If not specified, the

service will listen on all interfaces (any).

24 CHAPTER 3. XTREEMFS SERVICES

listen.port

Services DIR, MRC, OSD
Values 1 .. 65535
Default DIR: 32638,

MRC: 32636,
OSD: 32640

Description The port to listen on for incoming ONC-RPC connections (TCP).
The OSD uses the specified port for both TCP and UDP. Please make
sure to configure your firewall to allow incoming TCP traffic (plus
UDP traffic, in case of an OSD) on the specified port.

local_clock_renewal

Services MRC, OSD
Values milliseconds
Default 50
Description Reading the system clock is a slow operation on some systems

(e.g. Linux) as it is a system call. To increase performance,
XtreemFS services use a local variable which is only updated every
local_clock_renewal milliseconds.

monitoring

Services DIR
Values true, false
Default false
Description Enables the built-in monitoring tool in the directory service. If en-

abled, the DIR will send alerts via emails if services are crashed (i.e.
do not send heartbeat messages). No alerts will be sent for services
which signed-off at the DIR. To enable monitoring you also need
to configure email.receiver, email.program. In addition, you
may want to change the values for email.sender, email.programm,
service_timeout_s and max_warnings.

monitoring.email.programm

Services DIR
Values path
Default /usr/sbin/sendmail
Description Location of the sendmail binary to be used for sending alert mails.

See monitoring.

monitoring.email.receiver

Services DIR
Values email address
Default -
Description Email address of recipient of alert emails. See monitoring.

3.2. CONFIGURATION 25

monitoring.email.sender

Services DIR
Values email address
Default “XtreemFS DIR service <dir@localhost>”
Description Email address and sender name to use for sending alert mails. See

monitoring.

monitoring.max_warnings

Services DIR
Values 0..N
Default 1
Description Number of alert mails to send for a single service which has

crashed/disconnected. Each alert mail contains a summary of all
crashed/disconnected services. See monitoring.

no_atime

Services MRC
Values true, false
Default true
Description The POSIX standard defines that the atime (timestamp of last file ac-

cess) is updated each time a file is opened, even for read. This means
that there is a write to the database and hard disk on the MRC each
time a file is read. To reduce the load, many file systems (e.g. ext3)
including XtreemFS can be configured to skip those updates for per-
formance. It is strongly suggested to disable atime updates by setting
this parameter to true.

object_dir

Services OSD
Values absolute file system path to a directory
Default /var/lib/xtreemfs/osd/
Description The directory in which the OSD stores the objects. This directory

should never be on the same partition as any DIR or MRC database,
if both services reside on the same machine. Otherwise, deadlocks
may occur if the partition runs out of free disk space!

osd_check_interval

Services MRC
Values seconds
Default 300
Description The MRC regularly asks the directory service for suitable OSDs to

store files on (see OSD Selection Policy, Sec. 6.3). This parameter
defines the interval between two updates of the list of suitable OSDs.

26 CHAPTER 3. XTREEMFS SERVICES

remote_time_sync

Services MRC, OSD
Values milliseconds
Default 30,000
Description MRCs and OSDs all synchronize their clocks with the directory ser-

vice to ensure a loose clock synchronization of all services. This is re-
quired for leases to work correctly. This parameter defines the interval
in milliseconds between time updates from the directory service.

report_free_space

Services OSD
Values true, false
Default true
Description If set to true, the OSD will report its free space to the directory ser-

vice. Otherwise, it will report zero, which will cause the OSD not to
be used by the OSD Selection Policies (see Sec. 6.3).

service_timeout_s

Services DIR
Values 0..N seconds
Default 300
Description Time to wait for a heartbeat message before sending an alert email.

See monitoring.

ssl.enabled

Services DIR, MRC, OSD
Values true, false
Default false
Description If set to true, the service will use SSL to authenticate and encrypt

connections. The service will not accept non-SSL connections if
ssl.enabled is set to true.

ssl.grid_ssl

Services DIR, MRC, OSD
Values true, false
Default false
Description In this mode the services and client will only use SSL for mutual au-

thentication with X.509 certificates (SSL handshake). After successful
authentication the communication is via plain TCP. This means that
there is no encryption and signing of records! This mode is com-
parable to HTTP connections with Digest authentication. It should
be used when certificate based authentication is required but perfor-
mance is more important than security, which is usually true in GRID
installations. If this mode is enabled, all client tools must be used with
the oncrpcg:// scheme prefix.

3.2. CONFIGURATION 27

ssl.service_creds

Services DIR, MRC, OSD
Values path to file
Default DIR: /etc/xos/xtreemfs/truststore/certs/ds.p12,

MRC: /etc/xos/xtreemfs/truststore/certs/mrc.p12,
OSD: /etc/xos/xtreemfs/truststore/certs/osd.p12

Description Must be specified if ssl.enabled is enabled. Specifies the
file containing the service credentials (X.509 certificate and pri-
vate key). PKCS#12 and JKS format can be used, set
ssl.service_creds.container accordingly. This file is used dur-
ing the SSL handshake to authenticate the service.

ssl.service_creds.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default pkcs12
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.service_creds file.

ssl.service_creds.pw

Services DIR, MRC, OSD
Values String
Default
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the credentials file ssl.service_creds.

ssl.trusted_certs

Services DIR, MRC, OSD
Values path to file
Default /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
Description Must be specified if ssl.enabled is enabled. Specifies the file con-

taining the trusted root certificates (e.g. CA certificates) used to au-
thenticate clients.

ssl.trusted_certs.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default JKS
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.trusted_certs file.

28 CHAPTER 3. XTREEMFS SERVICES

ssl.trusted_certs.pw

Services DIR, MRC, OSD
Values String
Default
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the trusted certificates file ssl.trusted_certs.

startup.wait_for_dir

Services MRC, OSD
Values 0..N seconds
Default 30
Description Time to wait for the DIR to become available during start up of the

MRC and OSD. If the DIR does not respond within this time the
MRC or OSD will abort startup.

uuid

Services MRC, OSD
Values String, but limited to alphanumeric characters, - and .
Default
Description Must be set to a unique identifier, preferably a UUID according

to RFC 4122. UUIDs can be generated with uuidgen. Example:
eacb6bab-f444-4ebf-a06a-3f72d7465e40.

3.3 Execution and Monitoring

This section describes how to execute and monitor XtreemFS services.

3.3.1 Starting and Stopping the XtreemFS services

If you installed a pre-packaged release you can start, stop and restart the services with
the init.d scripts:

$> /etc/init.d/xtreemfs-ds start
$> /etc/init.d/xtreemfs-mrc start
$> /etc/init.d/xtreemfs-osd start

or

$> /etc/init.d/xtreemfs-ds stop
$> /etc/init.d/xtreemfs-mrc stop
$> /etc/init.d/xtreemfs-osd stop

To run init.d scripts, root permissions are required. Note that the Directory Service
must be started first, since a running Directory Service is required when starting an

3.3. EXECUTION AND MONITORING 29

MRC or OSD. Once a Directory Service as well as at least one OSD and MRC are
running, XtreemFS is operational.
Alternatively, you can use the xctl tool to start and stop the services. Config files are
read from ./etc/xos/xtreemfs unless another path is specified with -c <path>.

$> bin/xctl --start-dir
$> bin/xctl --start-mrc
$> bin/xctl --start-osd

or

$> bin/xctl --stop-osd
$> bin/xctl --stop-mrc
$> bin/xctl --stop-dir

The servers will be executed under the user ID of the user who called the xctl script.

3.3.2 Web-based Status Page

Figure 3.1: OSD status web page

Each XtreemFS service can generate an HTML status page, which displays runtime
information about the service (Fig. 3.1). The HTTP server that generates the status
page runs on the port defined by the configuration property http_port; default
values are 30636 for MRCs, 30638 for Directory Services, and 30640 for OSDs.
The status page of an MRC can e.g. be shown by opening
http://my-mrc-host.com:30636/

with a common web browser. If you set an admin password in the service’s config-
uration, you will be asked for authentication when accessing the status page. Use
admin as username.

30 CHAPTER 3. XTREEMFS SERVICES

3.3.3 DIR Service Monitoring

The directory service has a built-in notification system that can send alert emails
if a service fails to send heartbeat messages for some time. The monitoring can be
enabled in the DIR configuration by setting monitoring = true.

3.4 Troubleshooting

Various issues may occur when attempting to set up an XtreemFS server component.
If a service fails to start, the log file often reveals useful information. Server log
files are located in /var/log/xtreemfs. Note that you can restrict granularity
and categories of log messages via the configuration properties debug.level and
debug.categories (see Sec. 3.2.5).

If an error occurs, please check if one of the following requirements is not met:

• You have root permissions when starting the service. Running the init.d
scripts requires root permissions. However, the services themselves are started
on behalf of a user xtreemfs.

• DIR has been started before MRC and OSD. Problems may occur if a script
starts multiple services as background processes.

• There are no firewall restrictions that keep XtreemFS services from commu-
nicating with each other. The default ports that need to be open are: 32636
(MRC, TCP), 32638 (DIR, TCP), and 32640 (OSD, TCP & UDP).

• The MRC database version is correct. In case of an outdated database version,
the xtfs_mrcdbtool commands of the old and new XtreemFS version can
dump and restore the database, respectively (see Sec. 5.2.1).

• A network interface is available on the host. It may be either bound to an IPv4
or IPv6 address.

Chapter 4

XtreemFS Client

The XtreemFS client is needed to access an XtreemFS installation from a remote
machine. This chapter describes how to use the XtreemFS client in order to work
with XtreemFS like a local file system.

4.1 Installation

There are two different installation sources for the XtreemFS Client: pre-packaged
releases and source tarballs.
Note that the source tarball contains the complete distribution of XtreemFS, which
also includes server and tools. Currently, binary distributions of the client are only
available for Linux and Windows.

4.1.1 Prerequisites

To install XtreemFS on Linux, please make sure that FUSE 2.6 or newer, openSSL
0.9.8 or newer and a Linux 2.6 kernel are available on your system. For an optimal
performance, we suggest to use FUSE 2.8 with a kernel version 2.6.26 or newer.
To build the Linux XtreemFS Client from the source distribution, you also need the
openSSL headers (e.g. openssl-devel package), python ≥ 2.4, and gcc-c++ ≥ 4.2.

4.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-client-1.2.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-client-1.2.x.deb

31

32 CHAPTER 4. XTREEMFS CLIENT

For Windows, please use the .msi installer that will guide you through the installation
process.

4.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make client

This will build the XtreemFS client and non-Java-based tools. Note that the follow-
ing third-party packages are required on Linux:

python >= 2.4
gcc-c++ >= 4
fuse >= 2.6
fuse-devel >= 2.6 (RPM-based distros)
libfuse-dev >= 2.6 (DEB-based distros)
libopenssl-devel >= 0.8 (RPM-based distros)
libssl-dev >= 0.9 (DEB-based distros)

When done, execute

$> sudo make install-client

to complete the installation of XtreemFS.

4.2 Volume Management

Like many other file systems, XtreemFS supports the concept of volumes. A volume
can be seen as a container for files and directories with its own policy settings, e.g. for
access control and replication. Before being able to access an XtreemFS installation,
at least one volume needs to be set up. This section describes how to deal with
volumes in XtreemFS.

4.2.1 Creating Volumes

Volumes can be created with the mkfs.xtreemfs command line utility. Please see
man mkfs.xtreemfs for a full list of options and usage.
When creating a volume, it is recommended to specify the access control policy (see
Sec. 6.2). If not specified, POSIX permissions/ACLs will be chosen by default.
Unlike most other policies, access control policies cannot be changed afterwards.
In addition, it is recommended to set a default striping policy (see Sec. 6.4). If no
per-file or per-directory default striping policy overrides the volume’s default striping
policy, the volume’s policy is assigned to all newly created files. If no volume policy
is explicitly defined when creating a volume, a RAID0 policy with a stripe size of
128kB and a width of 1 will be used as the default policy.
A volume with a POSIX permission model, a stripe size of 256kB and a stripe width
of 1 (i.e. all stripes will reside on the same OSD) can be created as follows:

4.3. ACCESSING VOLUMES 33

$> mkfs.xtreemfs -a POSIX -p RAID0 -s 256 -w 1 \
my-mrc-host.com:32636/myVolume

Creating a volume may require privileged access, which depends on whether an ad-
ministrator password required by the MRC. To pass an administrator password, add
––password <password> to the mkfs.xtreemfs command.

For a complete list of parameters, please refer to the mkfs.xtreemfs man pages.

4.2.2 Deleting Volumes

Volumes can be deleted with the rmfs.xtreemfs tool. Note that deleting a volume
implies that any data, i.e. all files and directories on the volume are deleted! Please see
man rmfs.xtreemfs for a full list of options and usage.

The volume myVolume residing on the MRC my-mrc-host.com:32636 can e.g. be
deleted as follows:

$> rmfs.xtreemfs my-mrc-host.com:32636/myVolume

Volume deletion is restricted to volume owners and privileged users. Similar to
xtfs_mkvol, an administrator password can be specified if required.

4.2.3 Listing all Volumes

A list of all volumes can be displayed with the lsfs.xtreemfs tool. All volumes
hosted by the MRC my-mrc-host.com:32636 can be listed as follows:

$> lsfs.xtreemfs my-mrc-host.com:32636

Adding the –l flag will result in more details being shown.

4.3 Accessing Volumes

Once a volume has been created, it needs to be mounted in order to be accessed.

4.3.1 Mounting and Un-mounting

Before mounting XtreemFS volumes on a Linux machine, please ensure that the
FUSE kernel module is loaded. Please check your distribution’s manual to see if
users must be in a special group (e.g. trusted in openSuSE) to be allowed to mount
FUSE.

$> su
Password:
#> modprobe fuse
#> exit

34 CHAPTER 4. XTREEMFS CLIENT

Volumes are mounted with the xtfs_mount command:

$> mount.xtreemfs remote.dir.machine/myVolume /xtreemfs

remote.dir.machine describes the host with the Directory Service at which the
volume is registered; myVolume is the name of the volume to be mounted. /xtreemfs
is the directory on the local file system to which the XtreemFS volume will be
mounted. For more options, please refer to man mount.xtreemfs.

Please be aware that the Directory Service URL needs to be provided when mount-
ing a volume, while MRC URLs are used to create volumes.

When mounting a volume, the client will immediately go into background and won’t
display any error messages. Use the -f option to prevent the mount process from
going into background and get all error messages printed to the console.

To check that a volume is mounted, use the mount command. It outputs a list of all
mounts in the system. XtreemFS volumes are listed as type fuse:

xtreemfs on /xtreemfs type fuse (rw,nosuid,nodev,user=userA)

Volumes are unmounted with the umount.xtreemfs tool:

$> umount.xtreemfs /xtreemfs

4.3.2 Mount Options

Access to a FUSE mount is usually restricted to the user who mounted the volume.
To allow the root user or any other user on the system to access the mounted vol-
ume, the FUSE options -o allow_root and -o allow_other can be used with
xtfs_mount. They are, however, mutually exclusive. In order to use these options,
the system administrator must create a FUSE configuration file /etc/fuse.conf
and add a line user_allow_other.

By default, the local system cache on the client machine will be used to speed up
read access to XtreemFS. In particular, using the cache as a local buffer is necessary
to support the mmap system call, which - amongst others - is required to execute ap-
plications on Linux. On the other hand, using buffered I/O may adversely affect
throughput when writing large files, as FUSE ≤ 2.7 splits up large writes into mul-
tiple individual 4k (page size) writes. In addition, it limits the consistency model
of client caches to “close-to-open”, which is similar to the model provided by NFS.
Buffered I/O can be switched off by adding the -o direct_io parameter. The pa-
rameter effects that all read and write operations are directed to their OSDs instead
of being served from local caches.

4.4 Troubleshooting

Different kinds of problems may occur when trying to create, mount or access
files in a volume. If no log file was specified, the client will create a logfile called
mount.xtreemfs.log in the current working direcory. This logile is only created

4.4. TROUBLESHOOTING 35

in case of an error message. In case no useful error message printed on the console
or in the logfile, it may help to enable client-side log output. This can be done as
follows:

$> mount.xtreemfs -f -d INFO remote.dir.machine/myVolume /xtreemfs

The following list contains the most common problems and the solutions.

Problem A volume cannot be created or mounted.
Solution Please check your firewall settings on the server side. Are all ports ac-

cessible? The default ports are 32636 (MRC), 32638 (DIR), and 32640
(OSD).
In case the XtreemFS installation has been set up behind a NAT, it
is possible that services registered their NAT-internal network inter-
faces at the DIR. In this case, clients cannot properly resolve server
addresses, even if port forwarding is enabled. Please check the Ad-
dress Mappings section on the DIR status page to ensure that exter-
nally reachable network interfaces have been registered for the your
servers’ UUIDs. If this is not the case, it is possible to explicitly spec-
ify the network interfaces to register via the hostname property (see
Sec. 3.2.5).

Problem When trying to mount a volume, ONC-RPC exception: system
error appears on the console.

Solution The most common reason are incompatible protocol versions in
client and server. Please make sure that client and server have the
same release version numbers. They can be determined as follows:

Server: check the status pages. Alternatively, execute rpm -qa | grep
xtreemfs-server on RPM-based distributions, or dpkg -l |
grep xtreemfs-server on DEB-based distributions.

Client: execute rpm -qa | grep xtreemfs-client on RPM-based
distributions, or dpkg -l | grep xtreemfs-client on
DEB-based distributions.

Problem An error occurs when trying to access a mounted volume.
Solution Please make sure that you have sufficient access rights to the vol-

ume root. Superusers and volume owners can change these rights via
chmod <mode> <mountpoint>. If you try to access a mount point
to which XtreemFS was mounted by a different user, please make
sure that the volume is mounted with xtfs_mount -o allow_other
....

36 CHAPTER 4. XTREEMFS CLIENT

Problem An I/O error occurs when trying to create new files.
Solution In general, you can check the contents of the client log file to see the

error which caused the I/O error. A common reason for this problem
is that no OSD could be assigned to the new file. Please check if
suitable OSDs are available for the volume. There are two alternative
ways to do this:

• Open the MRC status page. It can be accessed via
http://<MRC-host>:30636 in the default case. For each vol-
ume, a list of suitable OSDs is shown there.

• Execute getfattr -n xtreemfs.usable_osds
––only-values <mountpoint>.

There may be different reasons for missing suitable OSDs:

• One or more OSDs failed to start up. Please check the log files
and status pages of all OSDs to ensure that they are running.

• One or more OSDs failed to register or regularly report activity
at the DIR. Please check the DIR status page to ensure that all
OSDs are registered and active.

• There are no OSDs with a sufficient amount of free disk space.
Please check the OSD status page to obtain information about
free disk space.

Problem An I/O error occurs when trying to access an existing file.
Solution Please check whether all OSDs assigned to the file are running and

reachable. This can be done as follows:

1. Get the list of all OSDs for the file: getfattr -n
xtreemfs.locations ––only-values <file>.

2. Check whether the OSDs in (one of) all replicas in the list are
running and reachable, e.g. by opening the status pages or via
telnet <host> <port>.

Chapter 5

XtreemFS Tools

To make use of most of the advanced XtreemFS features, XtreemFS offers a variety
of different tools. There are tools that support administrators with the maintenance
of an XtreemFS installation, as well as tools for controlling features like replication
and striping. An overview of the different tools with descriptions of how to use
them are provided in the following.

5.1 Installation

When installing the XtreemFS tool suite, you can choose from two different instal-
lation sources: you can download one of the pre-packaged releases that we create for
most Linux distributions or you can install directly from the source tarball.
Note that the source tarball contains the complete distribution of XtreemFS, which
also includes client and server. Currently, binary distributions of the tools are only
available for Linux.

5.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system.
When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

5.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-tools-1.2.x.rpm xtreemfs-backend-1.2.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

37

38 CHAPTER 5. XTREEMFS TOOLS

$> dpkg -i xtreemfs-tools-1.2.x.deb xtreemfs-backend-1.2.x.deb

To install the tools, the following package is required: jre ≥ 1.6.0 for RPM-based
releases, java6-runtime for Debian-based releases. If you already have a different
distribution of Java6 on your system, you can alternatively install the XtreemFS
tools packages as follows:

$> rpm -i --nodeps xtreemfs-tools-1.2.x.rpm \
xtreemfs-backend-1.2.x.rpm

on RPM-based distributions,

$> dpkg -i --ignore-depends java6-runtime \
xtreemfs-tools-1.2.x.deb xtreemfs-backend-1.2.x.deb

on Debian-based distributions.

To ensure that your local Java6 installation is used, is necessary to set the JAVA_HOME
environment variable to your Java6 installation directory, e.g.

$> export JAVA_HOME=/usr/java6

All XtreemFS tools will be installed to /usr/bin.

5.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make server

When done, execute

$> sudo make install-tools

to complete the installation. Note that this will also install the XtreemFS client and
servers.

5.2 Maintenance Tools

This section describes the tools that support administrators in maintaining an XtreemFS
installation.

5.2. MAINTENANCE TOOLS 39

5.2.1 MRC Database Conversion

The database format in which the MRC stores its file system metadata on disk may
change with future XtreemFS versions, even though we attempt to keep it as stable
as possible. To ensure that XtreemFS server components may be updated without
having to create and restore a backup of the entire installation, it is possible to con-
vert an MRC database to a newer version by means of a version-independent XML
representation.

This is done as follows:

1. Create an XML representation of the old database with the old MRC version.

2. Update the MRC to the new version.

3. Restore the database from the XML representation.

xtfs_mrcdbtool is a tool that is capable of doing this. It can create an XML dump
of an MRC database as follows:

$> xtfs_mrcdbtool -mrc oncrpc://my-mrc-host.com:32636 \
dump /tmp/dump.xml

A file dump.xml containing the entire database content of the MRC running on
my-mrc-host.com:32636 is written to /tmp/dump.xml. For security reasons, the
dump file will be created locally on the MRC host. To make sure that sufficient write
permissions are granted to create the dump file, we therefore recommend to specify
an absolute dump file path like /tmp/dump.xml.

A database dump can be restored from a dump file as follows:

$> xtfs_mrcdbtool -mrc oncrpc://my-mrc-host.com:32636 \
restore /tmp/dump.xml

This will restore the database stored in /tmp/dump.xml at my-mrc-host.com. Note
that for safety reasons, it is only possible to restore a database from a dump if the
database of the running MRC does not have any content. To restore an MRC
database, it is thus necessary to delete all MRC database files before starting the
MRC.

Please be aware that dumping and restoring databases may both require privileged
access rights if the MRC requires an administrator password. The password can be
specified via –p; for further details, check the xtfs_mrcdbtool man page.

5.2.2 Scrubbing and Cleanup

In real-world environments, errors occur in the course of creating, modifying or
deleting files. This can cause corruptions of file data or metadata. Such things happen
e.g. if the client is suddenly terminated, or loses connection with a server component.
There are several such scenarios: if a client writes to a file but does not report file
sizes received from the OSD back to the MRC, inconsistencies between the file size

40 CHAPTER 5. XTREEMFS TOOLS

stored in the MRC and the actual size of all objects in the OSD will occur. If a client
deletes a file from the directory tree, but cannot reach the OSD, orphaned objects
will remain on the OSD. If an OSD is terminated during an ongoing write operation,
file content will become corrupted.

In order to detect and, if possible, resolve such inconsistencies, tools for scrubbing
and OSD cleanup exist. To check the consistency of file sizes and checksums, the
following command can be executed:

$> xtfs_scrub -dir oncrpc://my-dir-host.com:32638 myVolume

This will scrub each file in the volume myVolume, i.e. check file size consistency
and set the correct file size on the MRC, if necessary, and check whether an invalid
checksum in the OSD indicates a corrupted file content. The -dir argument speci-
fies the directory service that will be used to resolve service UUIDs. Please see man
xtfs_scrub for further details.

A second tool scans an OSD for orphaned objects, which can be used as follows:

$> xtfs_cleanup -dir oncrpc://localhost:32638 \
uuid:u2i3-28isu2-iwuv29-isjd83

The given UUID identifies the OSD to clean and will be resolved by the directory
service defined by the -dir option (localhost:32638 in this example). The process
will be started and can be stopped by setting the option -stop. To watch the cleanup
progress use option -i for the interactive mode. For further information see man
xtfs_cleanup.

5.3 User Tools

Besides administrator tools, a variety of tools exist that make advanced XtreemFS
features accessible to users. These tools will be described in this section.

5.3.1 Showing XtreemFS-specific File Info

In addition to the regular file system information provided by the stat Linux utility,
XtreemFS provides the xtfs_stat tool which displays XtreemFS specific informa-
tion for a file or directory.

$> cd /xtreemfs
$> echo ’Hello World’ > test.txt
$> xtfs_stat test.txt

will produce output similar to the following:

filename test.txt
XtreemFS URI oncrpc://localhost/test/test.txt
XtreemFS fileID 41e9a04d-0b8b-467b-94ef-74ade02a2dc9:6

5.3. USER TOOLS 41

object type regular file
owner stender
group users
read-only false

XtreemFS replica list
list version 0
replica update policy

replica 1 SP STRIPING_POLICY_RAID0, 128kb, 1
replica 1 OSDs [{address=127.0.0.1:32640, uuid=OSD1}]
replica 1 repl. flags 0x1

The fileID is the unique identifier of the file used on the OSDs to identify the file’s
objects. The owner/group fields are shown as reported by the MRC, you may see
other names on your local system if there is no mapping (i.e. the file owner does not
exist as a user on your local machine). Finally, the XtreemFS replica list shows the
striping policy of the file, the number of replicas and for each replica, the OSDs used
to store the objects.

5.3.2 Changing Striping Policies

Currently, it is not possible to change the striping policy of an existing file, as this
would require rearrangements and transfers of data between OSDs. However, it is
possible to define individual striping policies for files that will be created in the fu-
ture. This can be done by changing the default striping policy of the parent directory
or volume.
XtreemFS provides the xtfs_sp tool. The tool can be used to change the striping
policy that will be assigned to newly created files as follows:

$> xtfs_sp --set -p RAID0 -w 4 -s 256 /xtreemfs/dir

This will cause a RAID0 striping policy with 256kB stripe size and four OSDs to be
assigned to all newly created files in /xtreemfs/dir.
The tool can display the default striping policy of a volume or directory as follows:

$> xtfs_sp --get /xtreemfs/dir

This will result in output similar to the following:

file: /xtreemfs/dir
policy: STRIPING_POLICY_RAID0
stripe-size: 4
width (kB): 256

When creating a new file, XtreemFS will first check whether a default striping policy
has been assigned to the file’s parent directory. If this is not the case, the default
striping policy for the volume will be used as the striping policy for the new file.
Changing a volume’s or directory’s default striping policy requires superuser access
rights, or ownership of the volume or directory.

42 CHAPTER 5. XTREEMFS TOOLS

5.3.3 Read-Only Replication

Replication is one of core features of XtreemFS. A replica can be seen as a (not
essentially complete) copy of a file’s content on a remote (set of) OSD(s). Replication
is handled among the XtreemFS OSDs, which makes it completely transparent to
client applications.

So far, XtreemFS only supports read-only replication. Read-only replication requires
files to be immutable (i.e. ’read-only’), which implies that once a file has been repli-
cated, it can no longer be modified. The benefit of read-only replicas is that XtreemFS
can guarantee sequential replica consistency at a low cost; since files are no longer
modified when replicated, no overhead is caused to ensure replica consistency.

When replicating a file, the first step is to make the file read-only, which can be done
as follows:

$> xtfs_repl --set_readonly local-path-of-file

Once a file has been marked as read-only, replicas can be added. The tool supports
different replica creation modes. The automatic mode retrieves a list of OSDs from
the MRC and chooses the best OSD according to the current replica selection policy.
You can also select a specific OSD by specifying its UUID on the command line.

Newly created replicas are initially empty, which means that no file content has been
copied from other non-empty replicas. Yet, they can be immediately used by ap-
plications. If a replica does not have the requested data, it fetches the data from a
remote replica and saves it locally for future requests (on-demand replication). Such
partial replicas help to save network bandwidth and disk usage. Alternatively, repli-
cas can be triggered to fetch the whole data from remote replicas in the background,
regardless of client requests (background replication).

Moreover, XtreemFS supports different transfer strategies which has an big impact
on the speed of the replication and the order in which objects are fetched. A transfer
strategy must be chosen for each replica.

A replica can e.g. created as follows:

$> xtfs_repl --add_auto --full --strategy random \
/xtreemfs/file.txt

This command creates a new replica with an automatically-selected set of OSDs (for
details, see Sec. 6.3, 5.3.5). The switch ––full indicates that background replication
is desired; otherwise, replicas are filled on demand, which means that they remain
partial replicas until the application accesses all the objects of the replica.

To list all replicas and OSDs of the file use:

$> xtfs_repl -l /xtreemfs/file.txt

This generates output similar to this:

5.3. USER TOOLS 43

File is read-only.
REPLICA 1:

Striping Policy: STRIPING_POLICY_RAID0
Stripe-Size: 128,00 kB
Stripe-Width: 1 (OSDs)
Replication Flags:

Complete: false
Replica Type: partial
Transfer-Strategy: random

OSDs:
[Head-OSD] UUID: osd1, URL: /127.0.0.1:32641

REPLICA 2:
Striping Policy: STRIPING_POLICY_RAID0
Stripe-Size: 128,00 kB
Stripe-Width: 1 (OSDs)
Replication Flags:

Complete: true
Replica Type: partial
Transfer-Strategy: unknown

OSDs:
[Head-OSD] UUID: osd2, URL: /127.0.0.1:32640

Besides adding replicas, replicas can also be removed. Since replicas of a file do not
have a fixed order, we use a replica’s first OSD to identify the replica to delete. The
first OSD in a replica’s list of OSDs, also referred to as head OSD is a unique identifier
for a replica, as different replicas of a file may not share any OSDs.

To remove a replica, the UUID of the head OSD must be given as an argument. It
can be determined via xtfs_repl -l. To ensure that at least one complete replica
remains, i.e. a replica that stores the entire file content, complete replicas can only
be removed if there is at least one more complete complete replica of the file.

A replica can be removed as follows:

$> xtfs_repl -r osd1 /xtreemfs/file.txt

osd1 refers to the UUID of the head OSD in the replica to remove.

5.3.4 Automatic On-Close Replication

In addition to manually adding and removing replicas, XtreemFS supports an auto-
matic creation of new replicas when files are closed after having been initially writ-
ten. This feature can e.g. be used to automatically replicate volumes that only contain
write-once files, such as archival data.

To configure the behavior of the on-close replication, the xtfs_repl tool is used.

The number of replicas to be created when a file is closed can be specified as a volume-
wide parameter, which can be set as follows:

$> xtfs_repl --ocr_factor_set 2 /xtreemfs

44 CHAPTER 5. XTREEMFS TOOLS

This will automatically create a second replica when the file is closed, which implies
that the file will be made read-only. Note that by setting the replication factor to 1
(default value), on-close replication will be switched off, which means that the file
won’t be replicated and will remain writable after having been closed.

The current replication factor of a volume can be retrieved as follows:

$> xtfs_repl --ocr_factor_get /xtreemfs

Moreover, it is possible to specify whether an automatically created replica will be
synchronized in the background or on demand. By default, replicas will be synced
on demand. This can be changed as follows:

$> xtfs_repl --ocr_full_set true /xtreemfs

Depending on whether ––ocr_full_set is true or false, background replication
of newly created files is switched on or off.

To show whether replicas are automatically filled or not, execute the following com-
mand:

$> xtfs_repl --ocr_full_get /xtreemfs

5.3.5 Changing OSD and Replica Selection Policies

When creating a new file, OSDs have to be selected on which to store the file content.
Likewise, OSDs have to be selected for a newly added replica, as well as the order
in which replicas are contacted when accessing a file. How these selections are done
can be controlled by the user.

OSD and replica selection policies can only be set for the entire volume. Further
details about the policies are described in Sec. 6.3.

The policies are set and modified with the xtfs_repl tool. A policy that controls
the selection of a replica is set as follows:

$> xtfs_repl --rsp_set dcmap /xtreemfs

This will change the current replica selection policy to a policy based on a data center
map. The current replica selection policy is shown as follows:

$> xtfs_repl --rsp_get /xtreemfs

Note that by default, there is no replica selection policy, which means that the client
will attempt to access replicas in their natural order, i.e. the order in which the
replicas have been created.

Similar to replica selection policies, OSD selection policies are set and retrieved:

$> xtfs_repl --osp_set dcmap /xtreemfs

5.4. VIVALDI 45

sets a data center map-based OSD selection policy, which is invoked each time a new
file or replica is created. The following predefined policies exist (see Sec. 6.3 and man
xtfs_repl for details):

• default

• fqdn

• dcmap

• vivaldi

The default OSD selection policy selects a random subset of OSDs that are respon-
sive and have more than 2GB of free disk space, whereas the fqdn and dcmap poli-
cies select those subsets of responsive OSDs with enough space that are closest ac-
cording to fully qualified domain names and a data center map, accordingly. The
vivaldi policy uses the vivaldi coordinates of OSDs and clients for selecting the
closest replica. Besides, custom policies can be set by passing a list of basic policy
IDs to be successively applied instead of a predefined policy name.

The OSD selection policy can be retrieved as follows:

$> xtfs_repl --osp_get /xtreemfs

5.3.6 Setting and Listing Policy Attributes

OSD and replica selection policy behavior can be further specified by means of pol-
icy attributes. For a list of predefined attributes, see man xtfs_repl. Policy at-
tributes can be set as follows:

$> xtfs_repl --pol_attr_set domains "*.xtreemfs.org bla.com" \
/xtreemfs

A list of all policy attributes that have been set can be shown as follows:

$> xtfs_repl --pol_attrs_get /xtreemfs

5.4 Vivaldi

Client machines that want to use vivaldi network coordinates for replica and OSD
selection must calculate their own coordinates relative to the OSDs. This is done by
the xtfs_vivaldi utility which must be started on each client machine. Ideally, this
process is started during boot with the xtreemfs-vivaldi init.d scripts provided.
The utility must be started with the directory service address and the path to a file
in which the coordinates are stored.

$> xtfs_vivaldi remote.dir.machine \
/var/lib/xtreemfs/vivaldi_coordinates

46 CHAPTER 5. XTREEMFS TOOLS

If started with the init.d script, the utility will get the DIR address from
/etc/xos/xtreemfs/default_dir and will store the coordinates in
/var/lib/xtreemfs/vivaldi_coordinates.

The coordinate file must be passed as an argument when mounting a volume:

$> mount.xtreemfs -c /var/lib/xtreemfs/vivaldi_coordinates \
remote.dir.machine/myVolume /xtreemfs

Finally, the vivaldi replica and OSD selection policies must be set at the MRC for
the volume(s). See Sec. 5.3.5 for details.

Chapter 6

Policies

Many facets of the behavior of XtreemFS can be configured by means of policies.
A policy defines how a certain task is performed, e.g. how the MRC selects a set of
OSDs for a new file, or how it distinguishes between an authorized and an unautho-
rized user when files are accessed. Policies are a means to customize an XtreemFS
installation.

XtreemFS supports a range of predefined policies for different tasks. Alternatively,
administrators may define their own policies in order to adapt XtreemFS to customer
demands. This chapter contains information about predefined policies, as well as
mechanisms to implement and plug in custom policies.

6.1 Authentication Policies

Any operation on a file system is executed on behalf of a user. The process of de-
termining the user bound to a request is generally referred to as user authentication.
To render user authentication customizable, the MRC allows administrators to spec-
ify an authentication policy by means of an Authentication Provider. Authentica-
tion Providers are modules that implement different methods for retrieving user and
group IDs from requests.

The following predefined authentication providers exist:

6.1.1 UNIX uid/gid - NullAuthProvider

The NullAuthProvider is the default Authentication Provider. It simply uses the
user ID and group IDs sent by the XtreemFS client. This means that the client is
trusted to send the correct user/group IDs.

The XtreemFS Client will send the user ID and group IDs of the process which
executed the file system operation, not of the user who mounted the volume!

The superuser is identified by the user ID root and is allowed to do everything on
the MRC. This behavior is similar to NFS with no_root_squash.

47

48 CHAPTER 6. POLICIES

6.1.2 Plain SSL Certificates - SimpleX509AuthProvider

XtreemFS supports two kinds of X.509 certificates which can be used by the client.
When mounted with a service/host certificate the XtreemFS client is regarded as a
trusted system component. The MRC will accept any user ID and groups sent by
the client and use them for authorization as with the NullAuthProvider. This setup
is useful for volumes which are used by multiple users.
The second certificate type are regular user certificates. The MRC will only accept
the user name and group from the certificate and ignore the user ID and groups sent
by the client. Such a setup is useful if users are allowed to mount XtreemFS from
untrusted machines.
Both certificates are regular X.509 certificates. Service and host certificates are identi-
fied by a Common Name (CN) starting with host/ or xtreemfs-service/, which
can easily be used in existing security infrastructures. All other certificates are as-
sumed to be user certificates.
If a user certificate is used, XtreemFS will take the Distinguished Name (DN) as the
user ID and the Organizational Unit (OU) as the group ID.
Superusers must have xtreemfs-admin as part of their Organizational Unit (OU).

6.1.3 XtreemOS Certificates - XOSAuthProvider

In contrast to plain X.509 certificates, XtreemOS embeds additional user informa-
tion as extensions in XtreemOS-User-Certificates. This authentication provider uses
this information (global UID and global GIDs), but the behavior is similar to the
SimpleX509AuthProvider.
The superuser is identified by being member of the VOAdmin group.

6.2 Authorization Policies

Before executing an operation, a file system needs to check whether the user bound
to the operation is sufficiently authorized, i.e. is allowed to execute the operation.
User authorization is managed by means of access policies, which reside on the MRC.
Unlike authentication policies which are bound to an MRC, access policies can be
defined for each volume. This has to be done when the volume is created (see man
xtfs_mkvol). Various access policies can be used:

• Authorize All Policy (policy Id 1)
No authorization - everyone can do everything. This policy is useful if perfor-
mance of metadata operations matters more than security, since no evaluation
of access rights is needed.

• POSIX ACLs & Permissions (policy Id 2)
This access policy implements the traditional POSIX permissions commonly
used on Linux, as well as POSIX ACLs, an extension that provides for ac-
cess control at the granularity of single users and groups. POSIX permissions
should be used as the default, as it guarantees maximum compatibility with
other file systems.

6.3. OSD AND REPLICA SELECTION POLICIES 49

• Volume ACLs (policy Id 3)
Volume ACLs provide an access control model similar to POSIX ACLs & Per-
missions, but only allow one ACL for the whole volume. This means that
there is no recursive evaluation of access rights which yields a higher perfor-
mance at the price of a very coarse-grained access control.

6.3 OSD and Replica Selection Policies

When a new file is created or a replica is automatically added to a file, the MRC must
decide on a set of OSDs for storing the file content. To select the most suitable subset
among all known OSDs, OSD Selection Policies are used.

Replica selection is a related problem. When a client opens a file with more than
one replica, the MRC uses a replica selection policy to sort the list of replicas for
the client. Initially, a client will always attempt to access the first replica in the list
received from the MRC. If a replica is not available, it will automatically attempt to
access the next replica from the list, and restart with the first replica if all attempts
have failed. Replica selection policies can be used to sort the replica lists, e.g. to
ensure that clients first try to access replicas that are close to them.

Both OSD and replica selection policies share a common mechanism, in that they
consist of basic policies that can be arbitrarily combined. Input parameters of a basic
policy are a set of OSDs, the list of the current replica locations of the file, and the IP
address of the client on behalf of whom the policy was called. The output parameter
is a filtered and potentially sorted subset of OSDs. Since OSD lists returned by one
basic policy can be used as input parameters by another one, basic policies can be
chained to define more complex composite policies.

OSD and replica selection policies are assigned at volume granularity. For further
details on how to set such policies, please refer to Sec. 5.3.5.

6.3.1 Attributes

The behavior of basic policies can be further refined by means of policy attributes.
Policy attributes are extended attributes with a name starting with xtreemfs.policies.,
such as xtreemfs.policies.minFreeCapacity. Each time a policy attribute is
set, all policies will be notified about the change. How an attribute change affects the
policy behavior depends on the policy implementation.

6.3.2 Predefined Policies

Each basic policy can be assigned to one of the three different categories called filter-
ing, grouping and sorting. Filtering policies generate a sublist from a list of OSDs. The
sublist only contains those OSDs from the original list that have a certain property.
Grouping policies are used to select a subgroup from a given list of OSDs. They basi-
cally work in a similar manner as filtering policies, but unlike filtering policies, they
always return a list of a fixed size. Sorting policies generate and return a reordered list
from the input OSD list, without removing any OSDs.

The following predefined policies exist:

50 CHAPTER 6. POLICIES

Filtering Policies

• Default OSD filter (policy ID 1000)
Removes OSDs from the list that are either dead or do not have sufficient
space. By default, the lower space limit for an OSD is 2GB, and the upper
response time limit is 5 minutes.

Attributes:

– free_capacity_bytes: the lower space limit in bytes

– offline_time_secs: the upper response time limit in seconds

• FQDN-based filter (policy ID 1001)
Removes OSDs from the list that do not match any of the domains in a given
set. By default, the set of domains contains ’*’, which indicates that no do-
mains are removed.

Attributes:

– domains: a comma or space-separated list of domain names. The list
may include leading and trailing ’*’s, which will be regarded as wildcard
characters.

Grouping Policies

• Data center map-based grouping (policy ID 2000)
Removes all OSDs from the OSD set that have been used in the file’s replica
locations list already and selects the subset of OSDs that is closest to the client
and provides enough OSDs for the new replica in a single data center.

This policy uses a statically configured datacenter map that describes the dis-
tance between datacenters. It works only with IPv4 addresses at the moment.
Each datacenter has a list of matching IP addresses and networks which is used
to assign clients and OSDs to datacenters. Machines in the same datacenter
have a distance of 0.

This policy requires a datacenter map configuration file in
/etc/xos/xtreemfs/datacentermap on the MRC machine which is loaded
at MRC startup. This config file must contain the following parameters:

– datacenters=A,B,C
A comma separated list of datacenters. Datacenter names may only con-
tain a-z, A-Z, 0-9 and _.

– distance.A-B=100
For each pair of datacenters, the distance must be specified. As distances
are symmetric, it is sufficient to specify A to B.

– addresses.A=192.168.1.1,192.168.2.0/24
For each datacenter a list of matching IP addresses or networks must be
specified.

6.4. STRIPING POLICIES 51

– max_cache_size=1000
Sets the size of the address cache that is used to lookup IP-to-datacenter
matches.

A sample datacenter map could look like this:

datacenters=BERLIN,LONDON,NEW_YORK
distance.BERLIN-LONDON=10
distance.BERLIN-NEW_YORK=140
distance.LONDON-NEW_YORK=110
addresses.BERLIN=192.168.1.0/24
addresses.LONDON=192.168.2.0/24
addresses.NEW_YORK=192.168.3.0/24,192.168.100.0/25
max_cache_size=100

• FQDN-based grouping (policy ID 2001)
Removes all OSDs from the OSD set that have been used in the file’s replica
locations list already and selects the subset of OSDs that is closest to the client
and provides enough OSDs for the new replica in a single domain.

This policy uses domain names of clients and OSDs to determine the distance
between a client and an OSD, as well as if OSDs are in the same domain.

Sorting Policies

• Shuffling (policy ID 3000)
Shuffles the given list of OSDs.

• Data center map-based sorting (policy ID 3001)
Sorts the list of OSDs in ascending order of their distance to the client, accord-
ing to the data center map.

• Vivaldi network coordinates based sorting (policy ID 3003)
Sorts the list of OSDs in ascending order of their distance to the client, accord-
ing to the vivaldi coordinates of the client and OSDs. This policy requires the
clients to run the xtfs_vivaldi service.

• DNS based OSD Selection (policy ID 3002)
The FQDN of the client and all OSDs is compared and the maximum match
(from the end of the FQDN) is used to sort the OSDs. The policy sorts the
list of OSDs in descending order by the number of characters that match. This
policy can be used to automatically select OSDs which are close to the client,
if the length of the match between two DNS entries also indicate a low latency
between two machines.

6.4 Striping Policies

XtreemFS allows the content, i.e. the objects of a file to be distributed among several
storage devices (OSDs). This has the benefit that the file can be read or written in

52 CHAPTER 6. POLICIES

parallel on multiple OSDs in order to increase throughput. To configure how files
are striped, XtreemFS supports striping policies.
A striping policy is a rule that defines how the objects are distributed on the avail-
able OSDs. Currently, XtreemFS implements only the RAID0 policy which simply
stores the objects in a round robin fashion on the OSDs. The RAID0 policy has two
parameters. The striping width defines to how many OSDs the file is distributed.
If not enough OSDs are available when the file is created, the number of available
OSDs will be used instead; if it is 0, an I/O error is reported to the client. The stripe
size defines the size of each object.
Striping over several OSDs enhances the read and write throughput to a file. The
maximum throughput depends on the striping width. However, using RAID0 also
increases the probability of data loss. If a single OSD fails, parts of the file are no
longer accessible, which generally renders the entire file useless. Replication can
mitigate the problem but has all the restrictions described in Sec. 5.3.3.

6.5 Plug-in Policies

To further customize XtreemFS, the set of existing policies can be extended by defin-
ing plug-in policies. Such policies are Java classes that implement a predefined policy
interface. Currently, the following policy interfaces exist:

• org.xtreemfs.common.auth.AuthenticationProvider
interface for authentication policies

• org.xtreemfs.mrc.ac.FileAccessPolicy
interface for file access policies

• org.xtreemfs.mrc.osdselection.OSDSelectionPolicy
interface for OSD and replica selection policies

Note that there may only be one authentication provider per MRC, while file access
policies and OSD selection policies may differ for each volume. The former one
is identified by means of its class name (property authentication_provider, see
Sec. 3.2.3, 3.2.5), while volume-related policies are identified by ID numbers. It is
therefore necessary to add a member field

public static final long POLICY_ID = 4711;

to all such policy implementations, where 4711 represents the individual ID num-
ber. Administrators have to ensure that such ID numbers neither clash with ID
numbers of built-in policies (1-9), nor with ID numbers of other plug-in policies.
When creating a new volume, IDs of plug-in policies may be used just like built-in
policy IDs.
Plug-in policies have to be deployed in the directory specified by the MRC config-
uration property policy_dir. The property is optional; it may be omitted if no
plug-in policies are supposed to be used. An implementation of a plug-in policy can
be deployed as a Java source or class file located in a directory that corresponds to
the package of the class. Library dependencies may be added in the form of source,
class or JAR files. JAR files have to be deployed in the top-level directory. All source
files in all subdirectories are compiled at MRC start-up time and loaded on demand.

Appendix A

Support

Please visit the XtreemFS website at www.xtreemfs.org for links to the user mailing
list, bug tracker and further information.

53

http://www.xtreemfs.org

54 APPENDIX A. SUPPORT

Appendix B

XtreemOS Integration

B.1 XtreemFS Security Preparations

XtreemFS can be integrated in an existing XtreemOS VO security infrastructure.
XtreemOS uses X.509 certificates to authenticate users in a Grid system, so the gen-
eral setup is similar to a normal SSL-based configuration.

Thus, in an XtreemOS environment, certificates have to be created for the services
as a first step. This is done by issuing a Certificate Signing Request (CSR) to the RCA
server by means of the create-server-csr command. For further details, see the
Section Using the RCA in the XtreemOS User Guide.

Signed certificates and keys generated by are RCA infrastructure are stored locally in
PEM format. Since XtreemFS services are currently not capable of processing PEM
certificates, keys and certificates have to be converted to PKCS12 and Java Keystore
format, respectively.

Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have created and signed, the conversion has to take place. Assuming that cer-
tificate/private key pairs reside in the current working directory for the Directory
Service, an MRC and an OSD (ds.pem, ds.key, mrc.pem, mrc.key, osd.pem and
osd.key), the conversion can be initiated with the following commands:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service.

XtreemFS services need a trust store that contains all trusted Certification Author-
ity certificates. Since all certificates created via the RCA have been signed by the
XtreemOS CA, the XtreemOS CA certificate has to be included in the trust store.

55

56 APPENDIX B. XTREEMOS INTEGRATION

To create a new trust store containing the XtreemOS CA certificate, execute the
following command:

$> keytool -import -alias xosrootca -keystore xosrootca.jks \
-trustcacerts -file \
/etc/xos/truststore/xtreemosrootcacert.pem

This will create a new Java Keystore xosrootca.jks with the XtreemOS CA cer-
tificate in the current working directory. The password chosen when asked will later
have to be added as a property in the service configuration files.

Once all keys and certificates have been converted, the resulting files should be
moved to /etc/xos/xtreemfs/truststore/certs as root:

mv ds.p12 /etc/xos/xtreemfs/truststore/certs
mv mrc.p12 /etc/xos/xtreemfs/truststore/certs
mv osd.p12 /etc/xos/xtreemfs/truststore/certs
mv xosrootca.jks /etc/xos/xtreemfs/truststore/certs

For setting up a secured XtreemFS infrastructure, each service provides the following
properties:

specify whether SSL is required
ssl.enabled = true

server credentials for SSL handshakes
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/\
service.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12

trusted certificates for SSL handshakes
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/\
xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

service.p12 refers to the converted file containing the credentials of the respective
service. Make sure that all paths and passphrases (xtreemfs in this example) are
correct.

Appendix C

Command Line Utilities

xtfs_cleanup Deletes orphaned objects on an OSD and restores orphaned files.

lsfs.xtreemfs (was xtfs_lsvol) Lists the volumes on an MRC.

mkfs.xtreemfs (was xtfs_mkvol) Creates a new volume on an MRC.

mount.xtreemfs (was xtfs_mount) The XtreemFS client which mounts an XtreemFS
volume locally on a machine.

xtfs_mrcdbtool Dumps and restores an XML representation of the MRC database.

xtfs_repl Controls file replication in XtreemFS.

rmfs.xtreemfs (was xtfs_rmvol) Deletes a volume.

xtfs_sp Displays and modifies default striping policies for directories and volumes.

xtfs_scrub Examines all files in a volume for wrong file sizes and checksums and
corrects wrong file sizes in the MRC.

xtfs_stat Displays XtreemFS-specific file information, such as OSD lists and striping
policies.

xtfs_test Automatically sets up an XtreemFS testing environment and runs the au-
tomatic XtreemFS test suite.

umount.xtreemfs (was xtfs_umount) Un-mounts a mounted XtreemFS volume.

xtfs_vivaldi client service to calculate vivaldi coordinates.

57

Index

Access Policy, 48
Authorize All, 48
POSIX ACLs, 48
POSIX Permissions, 48
Volume ACLs, 49

allow_others option, 34
allow_root option, 34
Architecture, 4
Authentication, 4
Authentication Provider, 9, 47

NullAuthProvider, 47
SimpleX509AuthProvider, 48
XOSAuthProvider, 48

Authorization, 4
Authorize All Access Policy, 48

CA
Certificate Authority, 11

Certificate, 4, 10
Certificate Authority, 11
Client, 5
Create Volume, 32
Credentials, 10

Delete Volume, 33
DIR, 4
Directory Service, 4

fileID, 41
FUSE, 5

init.d, 28

Java KeyStore, 11
JKS, 11

Metadata, 4
Metadata and Replica Catalog, 4
Metadata Server, 4
mkfs.xtreemfs, 32
Mount, 33
mount.xtreemfs, 33

Mounting, 5
MRC, 4

NullAuthProvider, 47

Object, 4
Object Storage Device, 4
Object-based File System, 4
On-close Replication, 43
OSD, 4
OSD Selection Policy, 49

PKCS#12, 10
Policy

Access Policy, 48
OSD Selection Policy, 49
Striping Policy, 4, 52

POSIX ACLs Access Policy, 48
POSIX Permissions Access Policy, 48

RAID0, 3, 52
Read-only Replication, 42
Replication, 42, 43

on-close, 43
read-only, 42

rmfs.xtreemfs, 33

SimpleX509AuthProvider, 48
SSL, 4
Status Page, 29
Storage Server, 4
Stripe Size, 52
Striping, 52

Stripe Size, 52
Striping Policy, 4, 52
Striping Width, 52

umount.xtreemfs, 34
Unmount, 34
user_allow_other option, 34
UUID, 9

58

INDEX 59

VFS, 5
Volume, 4, 5

Create, 32
Delete, 33
Mount, 33
Un-mount, 34

Volume ACLs Access Policy, 49

X.509, 4, 10
XOSAuthProvider, 48
xtfs_mkvol, 32
xtfs_mount, 33
xtfs_rmvol, 33
xtfs_sp, 41
xtfs_stat, 40
xtfs_umount, 34
XtreemFS stat, 40
XtreemFS striping policy tool, 41
XtreemOS

Integration, 55
XtreemOS Certificates, 48

	Quick Start
	About XtreemFS
	What is XtreemFS?
	What makes XtreemFS a distributed file system?
	What makes XtreemFS a replicated file system?

	Is XtreemFS suitable for me?
	XtreemFS is ...
	XtreemFS is not ...

	Core Features
	Distribution.
	Replication.
	Striping.
	Security.

	Architecture
	XtreemFS Components.

	XtreemFS Services
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Configuration
	A Word about UUIDs
	Automatic DIR Discovery
	Authentication
	Configuring SSL Support
	Converting PEM files to PKCS#12
	Importing trusted certificates from PEM into a JKS
	Sample Setup

	List of Configuration Options
	admin_password optional
	authentication_provider
	babudb.baseDir
	babudb.cfgFile optional
	babudb.checkInterval optional
	babudb.compression optional
	babudb.debug.level optional
	babudb.localTimeRenew experimental, optional
	babudb.logDir
	babudb.maxLogfileSize optional
	babudb.pseudoSyncWait optional
	babudb.repl.backupDir experimental, optional
	babudb.repl.chunkSize experimental, optional
	babudb.repl.participant experimental, optional
	babudb.repl.sync.n experimental, optional
	babudb.ssl.authenticationWithoutEncryption experimental, optional
	babudb.ssl.enabled experimental, optional
	babudb.ssl.service_creds experimental, optional
	babudb.ssl.service_creds.container experimental, optional
	babudb.ssl.service_creds.pw experimental, optional
	babudb.ssl.trusted_certs experimental, optional
	babudb.ssl.trusted_certs.container experimental, optional
	babudb.ssl.trusted_certs.pw experimental, optional
	babudb.sync
	babudb.worker.maxQueueLength optional
	babudb.worker.numThreads optional
	capability_secret
	capability_timeout optional
	checksums.enabled
	checksums.algorithm
	debug.level optional
	debug.categories optional
	dir_service.host
	dir_service.port
	discover optional
	geographic_coordinates optional
	hostname optional
	http_port
	listen.address optional
	listen.port
	local_clock_renewal
	monitoring
	monitoring.email.programm
	monitoring.email.receiver
	monitoring.email.sender
	monitoring.max_warnings
	no_atime
	object_dir
	osd_check_interval
	remote_time_sync
	report_free_space
	service_timeout_s
	ssl.enabled
	ssl.grid_ssl
	ssl.service_creds
	ssl.service_creds.container
	ssl.service_creds.pw
	ssl.trusted_certs
	ssl.trusted_certs.container
	ssl.trusted_certs.pw
	startup.wait_for_dir
	uuid

	Execution and Monitoring
	Starting and Stopping the XtreemFS services
	Web-based Status Page
	DIR Service Monitoring

	Troubleshooting

	XtreemFS Client
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Volume Management
	Creating Volumes
	Deleting Volumes
	Listing all Volumes

	Accessing Volumes
	Mounting and Un-mounting
	Mount Options

	Troubleshooting

	XtreemFS Tools
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Maintenance Tools
	MRC Database Conversion
	Scrubbing and Cleanup

	User Tools
	Showing XtreemFS-specific File Info
	Changing Striping Policies
	Read-Only Replication
	Automatic On-Close Replication
	Changing OSD and Replica Selection Policies
	Setting and Listing Policy Attributes

	Vivaldi

	Policies
	Authentication Policies
	UNIX uid/gid - NullAuthProvider
	Plain SSL Certificates - SimpleX509AuthProvider
	XtreemOS Certificates - XOSAuthProvider

	Authorization Policies
	OSD and Replica Selection Policies
	Attributes
	Predefined Policies
	Filtering Policies
	Grouping Policies
	Sorting Policies

	Striping Policies
	Plug-in Policies

	Support
	XtreemOS Integration
	XtreemFS Security Preparations

	Command Line Utilities

