
XtreemFS � a case for object-based storage in

Grid data management

Felix Hupfeld 1, Toni Cortes23, Björn Kolbeck1, Jan Stender1, Erich Focht4,
Matthias Hess4, Jesus Malo2, Jonathan Marti2, Eugenio Cesario5

1Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
2Barcelona Supercomputing Center (BSC), C Jordi Girona, 1-3, Barcelona, Spain

3Universitat Politecnica de Catalunya (UPC), C Jordi Girona, 31, Barcelona, Spain
4NEC HPC Europe GmbH, Hessbruehlstr. 21b, 70656 Stuttgart, Germany

5Institute High Performance Computing and Networks of the National Research
Council of Italy (ICAR-CNR), DEIS-UNICAL, P. Bucci 41-C, 87036 Rende, CS, Italy

Abstract. In today's Grids, �les are usually managed by Grid data
management systems that are superimposed on existing �le and storage
systems. In this position paper, we analyze this predominant approach
and argue that object-based �le systems can be an alternative when
adapted to the characteristics of a Grid environment. We describe how
we are solving the challenge of extending the object-based storage ar-
chitecture for the Grid in XtreemFS, an object-based �le system for
federated infrastructures.

1 Introduction

The �le abstraction is one of the success stories of system architecture, and
the current computing world is unthinkable without �le systems. Files are the
technology of choice for any unstructured data, and provide an e�cient container
for abstractions with more structure.

However, conventional network �le systems are ill-adapted to Grid-like en-
vironments. These �le systems are usually heavily geared toward centralized
installations in a single data center and lack reliable support for remote ac-
cess over wide-area networks (WANs) across multiple organizations. For Grid
data management an approach was needed to compensate these weaknesses of
installed local, network or distributed �le systems. Instead of extending �le sys-
tem architectures with the necessary features, Grid data management systems
are imposed on the existing �le system. Remote access protocols like GridFTP
[3] make �les and namespaces remotely accessible, and replica catalogs index the
whereabouts of a �le's copies.

While this approach of superimposing Grid data management on �le systems
has proven to be e�cient and e�ective it is not without drawbacks. Foremost,
certain characteristics of the typical Grid data management architecture prevent
these systems from performing as well as other, more integrated architectures.
In addition, they can not guarantee the consistency of �le content across replicas
and force applications and users to adapt their usage of the system accordingly.



In this paper, we claim that an object-based �le system architecture [11] can
be extended to be suitable for Grid environments and argue that it is a viable
alternative architecture for �le data management in Grids for many use cases. To
illustrate this argument, we demonstrate how we are solving some of the relevant
design issues in XtreemFS, a distributed object-based �le system for federated
wide-area infrastructures.

We continue this paper with a detailed study of Grid data management
from a system architecture perspective (Section 2) with emphasis on its struc-
tural shortcomings. In Section 3, we give an overview of an object-based storage
architecture for �le systems, and then describe how it can be extended for feder-
ated wide-area environments in Section 4. Section 4.1 presents the architecture
of XtreemFS as an example of an object-based Grid �le system. Section 5 gives
further details on existing �le systems and Grid data management solutions.

2 Common Characteristics of Grid Data Management

Grid data management systems provide their clients with access to �le data
that is stored at remote storage and �le systems. They index �les from storage
resources and provide clients with a uni�ed interface for accessing �les. Typically
the system relies on a daemon on the storage resource that mediates the remote
access protocol with the heterogeneous local access interfaces.

A replica catalog stores the access locations for a �le (sometimes called its
Physical File Name) and abstracts the Grid �le itself from its replicas at various
storage resources. It is often integrated with a metadata catalog, which imposes
a namespace on top of this Grid �le abstraction and structures the �le space for
later retrieval of particular �les. Common structuring methods are hierarchical
name spaces (with Logical File Names, LFNs), database-like extended metadata
attributes, and collections of �les.

In order to access a �le, the application has to download or replicate the �le
to its local �le system �rst (Fig. 1). When the �le is on the application's local
disk, the application can access the �le normally. Similarly, newly created and
modi�ed �les are uploaded to one of the storage resources or the new local �le
is registered with the system as a replica.

While this architecture has considerably simpli�ed access to data that is kept
at heterogeneous storage resources and integrates well with existing infrastruc-
tures, its architectural properties restrict the evolution of the basic approach.

Typical Grid data management systems do not exercise control over data ac-
cess beyond what is necessary for security purposes. The daemon that is running
on the storage resources only mediates remote access to its �les and has no no-
tion about the system's state. It does not know where other replicas for its �les
exist, nor does it know in which state its �les are. Also, Grid data management
systems do not control client access to downloaded �le copies.

Due to this lack of control and information, Grid data management systems
cannot make guarantees about the consistency of a �le's replicas and thus appli-
cations are generally restricted to write-once usage patterns of �les. Applications

2



Fig. 1. Components and their relationships of a typical Grid data management system.
Typically, �les are fetched from a storage resource before they can be accessed.

download read-only input �les, process them to generate output �les and upload
the latter to the data management system. In addition, storage resources are un-
aware of the state of their �les and can not oversee the replica creation process
themselves. Thus, an extra service is usually needed for the reliable creation of
replicas.

The architecture also has implications for performance. Typical Grid data
management systems only operate on complete �les, which increases the latency
to �rst access of the �le, because the client's access to the data has to be deferred
until the �le is fully recreated in the local �le system. The data management
system can not automatically prioritize parts of the data that would be accessed
�rst, nor can it make partial replicas that skip downloading parts which are not
required.

It can also be preferable to avoid downloading any data at all. Today, access
to a remote �le server can be much faster than the access to the application's
local hard disk. With the fast network connection commonly found in today's
computing systems, the application can exploit the aggregate bandwidth of many
remote disks or pro�t from a large �le cache in the server.

3 Object-Based Storage

Recently, distributed �le systems have advanced from predominantly block-based
architectures to so-called object-based storage. Block-based �le systems dis-
tribute �le data as blocks over the network, with blocks decoupled from their

3



association to a �le. The mapping between �les and blocks and the management
of free storage is centralized in the �le system server. With more processing
power becoming available per gigabyte, �le systems architects decided to raise
the level of abstraction and shifted the responsibility for block management to
the storage devices and address �le content directly over the network as so called
objects.

These object-based architectures [11][5] store the pure �le content (the ob-
jects) on one or more object storage devices (OSDs, Fig. 2) that are distributed
on the network. The �le namespace and other POSIX [9] metadata are kept in a
metadata server. After a �le system client is authorized by the metadata server
to access the �le's objects, all �le IO is done directly at one or more OSDs,
thereby avoiding the potential bottleneck of the metadata server.

Structurally, the object-based architecture bears many similarities to the typ-
ical architecture of Grid data management systems at �rst sight. Both typically
separate �le metadata from �le data and expose the notion of a �le to their
storage resources. In addition, however, object-based �le systems mediate any
operation of their clients, and can exercise full control over the operations where
necessary. Also these �le systems treat their storage resources as pure storage de-
vices for �le content, and do not o�er additional functionality that could restrict
the architecture.

The changes in technology have not only made more processing power avail-
able per hard disk, but also enlarged the performance gap between disk and
network IO. It can be much faster to access data in a computer's memory that
is located across the globe than accessing one's local hard disk. When a �le's
objects are striped over multiple OSDs, a client can leverage the aggregate band-
width of all hard disks of these OSDs, and access the �le at a higher speed than
would be possible with a local hard disk.

Existing object-based �le systems are designed as parallel �le systems for
clusters or enterprise �le systems with centralized IT infrastructures. A typical
installation is a rack of metadata servers and many OSDs with a lot of hard
disks. In this homogeneous environment, all OSDs are equal from a latency and
bandwidth perspective, and objects can be assigned to disks in a deterministic
way. The predominant source of failure are hard disks, which is handled by
introducing redundancy via RAID. Users of these �le systems are part of the
locally controlled administration domain.

4 Extending Object-Based Storage for the Grid

While object based-storage has all the amenities of a �le system and can exploit
the resources of today's hardware in an economic manner, it assumes a local
homogeneous and controlled environment and does not readily �t the dynamic
and heterogeneous environment of Grids.

Grid installations usually encompass multiple sites, organizations, and ad-
ministration domains. It is therefore essential, that the �le system is prepared
for the case that parts of its installation join, leave, or fail at any time. It needs

4



Fig. 2. Components and their relationships in an object-based �le system. The meta-
data server authenticates and authorizes the client on open() and issues a ticket. Sub-
sequently, all IO operations are directly performed at the object storage devices.

a federated structure, where no part is preferred to the others and partial ab-
sence due to failure or downtimes can be tolerated. The �le system must also
support authentication and authorization mechanisms of Virtual Organization
(VO) infrastructures.

In order to ensure high availability and access performance, a �le system
for the Grid must also support replication of �les and �le metadata. Because
the environment of the Grid is inherently unreliable, data must be replicated at
several locations so that it is available in case of failure. Also, it is often preferable
to replicate data closer to the consumers so that the �le system clients can pro�t
from shorter network latencies and higher bandwidth. The system should not
place restrictions other than for security on the placement of these replicas, so
that replicas can be created where and when they are most needed.

The major challenge with replicated data is to keep it consistent. When
multiple replicas are changed concurrently, the system must ensure that the
�le replicas are consistent and that the clients see the expected semantics of a
POSIX interface. These guarantees must not be weakened by any failures in the
environment.

When these challenges are addressed, the users can bene�t from all the ad-
vantages of a complete �le system. Because all operations of an application go
through the controlled �le system interface, the application is decoupled from
any internal aspects of the system. The �le system can see and in�uence any

5



operation of the application and act accordingly to provide it with the best pos-
sible performance. In turn, the application can simply mount and access the �le
system's data transparently.

4.1 The Architecture of XtreemFS

XtreemFS is an object-based �le system that has been speci�cally designed for
Grid environments as a part of the XtreemOS operating system. As an object-
based design, it is composed of clients, OSDs and metadata servers that are also
responsible for keeping replica locations (the Metadata and Replica Catalog,
MRC, see Fig. 3). In addition, a directory service acts as a registry to locate
servers and volumes in the system.

Fig. 3. Components and their relationships in XtreemFS. While supporting striping
over a group of OSDs, XtreemFS allows �les to be replicated to di�erent locations.

XtreemFS manages �le system volumes that represent mountable �le sys-
tems. A volume's �les and directories share certain default policies for replication
and access. To ensure availability, volumes can be replicated to multiple MRCs.
In order to be able to accommodate larger �le systems on commodity hardware,
volumes can also be partitioned across multiple MRCs.

Given proper access rights, clients can mount XtreemFS volumes anywhere in
the Grid. Volumes are registered in the directory service, where a client can look
up one or more MRCs hosting the volume's metadata. XtreemFS integrates with

6



common VO authentication methods to check a user's credentials. The user's
operations are subject to access policies. These access policies can implement
normal �le system policies like Unix user/group rights or full POSIX ACLs. In
a federated environment, policies also restrict the range of OSDs to which an
MRC will replicate �les, or the set of MRCs from which an OSD will accept
replicas.

Apart from these policy restrictions, our design allows �les to be replicated
to any OSD. In addition, a �le's replica can be striped across a group of OSDs,
which allows us to leverage the aggregate bandwidth of these storage devices by
accessing them in parallel.

As a fully integrated part of XtreemFS, OSDs are aware of the existing
replicas of a particular �le. This knowledge allows them to coordinate their
operations with OSDs that are hosting other replicas of the �le. Through this
coordination XtreemFS can guarantee POSIX semantics even in the presence
of concurrent accesses to the replicas. In order to coordinate operations on �le
data, OSDs negotiate leases [10] that allow their holder to de�ne the latest
version of the particular data without further communication e�orts. OSDs also
keep version numbers in order to be able to identify which OSDs have the latest
version of the �le data.

Policies dictate how many replicas an OSD forwards changes to before ac-
knowledging the write operation of the client. The user can for example choose
a strict policy, which always keeps at least three replicas up-to-date at di�erent
sites, or select a looser policy which updates other replicas lazily or on demand.

The awareness of OSDs about replicas also allows us to logically create new
replicas very quickly and reliably. From an external perspective a new replica is
created as soon as the OSD is aware of being the home for the data. Its versions
of replica �le objects are marked obsolete. Subsequently, the replica is physically
created, either on demand by a client's accesses or automatically when a policy
instructs the replica to do so. Replicas are therefore always created reliably as a
decentralized interaction between the OSDs. There is no need for extra services
that initiate, control or monitor the transfer of the data.

In order to be able to create replicas in the presence of failures of some of
the OSDs, and to be able to remove unreachable replicas, we have designed
a replica set coordination protocol that integrates with the lease coordination
protocol. The replica set protocols ensures that even in the worst failure case,
the replicated data can never become inconsistent, while still allowing replicas
to be added or removed in many failure scenarios.

This design allows us to make new replicas available very quickly, even if
�le data has not been completetly copied by the system. When an OSD's client
only accesses a certain part of the replica, the replica only needs to keep that
particular slice. The remaining data is automatically marked as being obsolete
and falls behind other replicas.

Because it involves a distributed consensus process that is inherently expen-
sive, the replica lease coordination process does not scale well. When too many
OSDs per �le are involved, the necessary communication increases excessively.

7



Fortunately, a moderate number of replicas is su�cient for most purposes. If a
large number of replicas is required, XtreemFS can switch the �le to a read-only
mode and allow an unlimited number of read-only �le replicas, which �ts many
common Grid data management scenarios.

4.2 Common Grid Use Cases and File Systems

The architecture of XtreemFS as an object-based �le system enables many fea-
tures that current Grid applications can take advantage of. The objective of
this section is to present some use cases that would clearly bene�t from the
possibilities of accessing their data through a �le system.

We �rst consider scienti�c applications that access large �les routinely. For
example, the Large Hadron Collider at CERN generates large �les that are used
in a read-only way from many nodes in a Grid. The current way of using these
huge �les is to copy them to the node where the �le will be processed and to
remove the �le eventually when the processing has �nished (traditional stage-in).

Being a �le system, XtreemFS is able to control where and how its clients
access a �le's replicas. If there is a replica close enough to the client, applications
can access this replica directly in a transparent way. Also, if only parts of a large
�le are accessed, the �le system can replicate these parts and avoid transfering
the whole �le. A �le system can also reduce the latency to �rst access consider-
ably by creating the replica in the background and redirecting to local data as
it becomes available.

Database Management Systems (DBMS) would also bene�t from automatic
and partial replica creation that can be supported by a �le system. Given that
databases are normally huge �les that are frequently accessed only in parts, a
�le system could replicate only the parts of the database that are being used,
reducing the amount of replicated data and the time and resources consumed
for creating the replica.

As XtreemFS allows replicas to be physically desynchronized, we can allow
MPI applications to work on di�erent replicas of the same �le when the dif-
ferent processes of the application are very far apart. XtreemFS assigns these
processes a nearby replica for writing. Depending on the replication policy, the
written data may be lazily synchronized to other replicas over time or later on
demand. In either case, XtreemFS guarantees that replicas appear consistent for
any subsequent read operation. Grid data management systems are not able to
support this kind of access pattern and thus applications have to be adapted.

5 Related Work

While many Grid projects have developed custom solutions for their data man-
agement problems, a couple of software products for Grid data management
have emerged and are widely adopted. Each of these system is following an ar-
chitectural approach similar to the one presented in Section 2, but have di�erent
focuses for their application domains.

8



Among the most prominent systems are the data management services of the
Globus toolkit [6][7]. Globus users install GridFTP [3] daemons on their storage
resources that export the host �le system and enable it for remote access. A
replica catalog (RLS) indexes these storage locations and implements additional
naming facilities on top of it. Globus integrates well with the local structure and
access rights management of the local system and is able to preserve �le nam-
ing across replicas. Its GridFTP framework [3] allows high-performance parallel
transfer of �les between the resources.

SDSC's Storage Resource Broker (SRB) [4] provides a complete data manage-
ment solution. Unlike Globus, it does not focus on preserving a storage host's �le
system name space and stores its �les under their �le identi�ers. It also provides
support for federated installations in multiple sites.

dCache [8] has a strong emphasis on archiving data with the help of tertiary
storage systems like tape robots. It can act as a front end to these resources and
allows clients to access �les via a �le system-like interface over NFS.

The AMGA metadata catalog [12] of the EGEE project provides support for
�ne-grained access control on extended metadata and features powerful replica-
tion capabilities. It can partially and fully replicate metadata on multiple sites
and supports federation of metadata by a master-slave like replication semantics.

Grid Datafarm (Gfarm) is a system for managing �les in Grids which follows
a �le system-like approach. It is specialized for workloads in which applications
create a large amount of data which is consumed by other applications later
on. While the �rst version of Gfarm allows �les to be written only once [13],
Gfarm v2 [14] aims to o�er full �le system functionality. There is also an e�ort
underway to standardize Grid �le system at the Grid File SystemWorking Group
(GFS-WG) of the Open Grid Forum (OGF).

Existing object-based �le systems are designed for single-site installations
and for high-performance parallel access to the storage resources. Commercial
(Panasas' ActiveScale, [2]), open-source (Lustre [1]), and research systems (Ceph
[2]) are available.

6 Conclusion

In this paper, we have analyzed where the typical architecture of Grid data
management systems has de�ciencies and argued that a Grid-aware adaptation of
the object-based �le system architecture is able to address them. As an example,
we have shown how some of the challenges of adapting object-based storage to
wide-area federated infrastructures are solved in XtreemFS.

Object-based �le systems for Grids won't be able to support the full range
of application domains of Grid data management systems. Object-based �le
systems assume storage resources with hard disks and can't interface to hetero-
geneous storage systems. It could also be di�cult to integrate them with existing
legacy installations. Nevertheless, we think that there are enough use cases, es-
pecially in new Grid installations, where applications could considerably bene�t
from running on a real �le system that is designed for the environment.

9



Acknowledgements

This work has been supported by the EU IST program as part of the XtreemOS
project (contract FP6-033576), and partially by the Spanish Ministry of Science
and Technology under the TIN2004-07739-C02-01 grant.

References

1. Lustre: A Scalable, High-Performance File System. Whitepaper.
2. Panasas ActiveScale File System (PanFS). Whitepaper.
3. William Allcock, John Bresnahan, Rajkumar Kettimuthu, and Michael Link. The

Globus Striped GridFTP Framework and Server. In SC '05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing, page 54, Washington, DC, USA,
2005. IEEE Computer Society.

4. C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource
Broker. In Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative Research. IBM Press, 1998.

5. Micahel Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian Satran. Object
storage: The future building block for storage systems. In 2nd International IEEE
Symposium on Mass Storage Systems and Technologies, 2005.

6. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, 11(2):115�128, 1997.

7. Ian Foster. Globus toolkit version 4: Software for service-oriented systems. In
IFIP International Conference on Network and Parallel Computing, volume 3779
of Lecture Notes in Computer Science, pages 2�13. Springer Verlag, 2005.

8. Patrick Fuhrmann and Volker Gülzow. dCache, Storage System for the Future. In
Euro-Par, pages 1106�1113, 2006.

9. The Open Group. The Single Unix Speci�cation, Version 3.
10. B. W. Lampson. How to build a highly available system using consensus. In

Babaoglu and Marzullo, editors, 10th International Workshop on Distributed Al-
gorithms (WDAG 96), volume 1151, pages 1�17. Springer-Verlag, Berlin Germany,
1996.

11. M. Mesnier, G. Ganger, and E. Riedel. Object-based storage. IEEE Communica-
tions Magazine, 8:84�90, 2003.

12. Nuno Santos and Birger Koblitz. Distributed Metadata with the AMGA Metadata
Catalog. In Proceedings of the Workshop on Next-Generation Distributed Data
Management - HPDC-15, 2006.

13. Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, Noriyuki Soda, and Satoshi
Sekiguchi. Grid datafarm architecture for petascale data intensive computing. In
CCGRID '02: Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, page 102, Washington, DC, USA, 2002. IEEE
Computer Society.

14. Osamu Tatebe, Satoshi Sekiguchi, Noriyuki Soda, Youhei Morita, and Satoshi Mat-
suoka. Gfarm v2: A grid �le system that supports high-performance distributed
and parallel data computing. In Proceedings of the International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2004), 2004.

10


